欧拉函数的积性证明
欧拉函数即 φ \varphi φ函数
以下两段是从大佬那里淘来的证明
同样的, t ⊥ n m ⇔ t ⊥ n , t ⊥ m ⇔ ( t m o d n ) ⊥ n , ( t m o d m ) ⊥ m t\perp nm\Leftrightarrow t\perp n,t\perp m\Leftrightarrow(t\bmod n)\perp n,(t\bmod m)\perp m t⊥nm⇔t⊥n,t⊥m⇔(tmodn)⊥n,(tmodm)⊥m,所以每个 [ 1 , n m ] [1, nm] [1,nm]之间的与 n m nm nm互质的数 t t t都可以对应到一个 [ 1 , n ] [1,n] [1,n]的与 n n n互质的数 t m o d n t\bmod n tmodn和一个 [ 1 , m ] [1,m] [1,m]的与 m m m互质的数 t m o d m t\bmod m tmodm。
并且根据中国剩余定理,这种对应是一一对应的(即已知 a ⊥ n , b ⊥ m a\perp n, b\perp m a⊥n,b⊥m后可以唯一确定一个 [ 1 , n m ] [1,nm] [1,n