欧拉函数的积性证明及线性筛

本文介绍了欧拉函数的积性性质,并通过两种不同的证明方式来展示这一特性,尤其是当两个正整数互质时。同时,文章探讨了线性筛在计算欧拉函数中的应用,分为三种情况详细阐述,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

欧拉函数的积性证明

欧拉函数即 φ \varphi φ函数

以下两段是从大佬那里淘来的证明

同样的, t ⊥ n m ⇔ t ⊥ n , t ⊥ m ⇔ ( t   m o d   n ) ⊥ n , ( t   m o d   m ) ⊥ m t\perp nm\Leftrightarrow t\perp n,t\perp m\Leftrightarrow(t\bmod n)\perp n,(t\bmod m)\perp m tnmtn,tm(tmodn)n,(tmodm)m,所以每个 [ 1 , n m ] [1, nm] [1,nm]之间的与 n m nm nm互质的数 t t t都可以对应到一个 [ 1 , n ] [1,n] [1,n]的与 n n n互质的数 t   m o d   n t\bmod n tmodn和一个 [ 1 , m ] [1,m] [1,m]的与 m m m互质的数 t   m o d   m t\bmod m tmodm

并且根据中国剩余定理,这种对应是一一对应的(即已知 a ⊥ n , b ⊥ m a\perp n, b\perp m an,bm后可以唯一确定一个 [ 1 , n m ] [1,nm] [1,n

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值