手势检测及手掌质心的运动轨迹(opencv)

http://blog.csdn.net/augusdi/article/details/8865589

http://blog.csdn.net/lichengyu/article/details/38392473

参照上面的博文(还有其他),自己也简单实现手势检测的实验,下面是个人的一些看法:

首先是肤色检测,自己使用的就有HSV和YCrCb这两种,从效果上看,YCrCb是比较好的。但是由于我是直接使用opencv中的cvtColor进行颜色空间转换的,在提取其中的一个通道,如下代码:

从结果可以看到大红色(不知道还有没其他颜色)会有干扰,这主要是因为在试验的时候桌上放了只红色的笔。另外,通过计算轮廓将非手的部分去掉(当然这种方法并不靠谱,需要改进)。

接下来就是对质心的提取,opencv提供了一个函数moments,如下:


对于要画出手掌质心的运动轨迹,思想是保存每一次的质心坐标,然后用线连起来即可。

然后就是检测轮廓的凸包等,也是有相关函数,但是对于convexityDefects函数,我在网上找到别人的例子中,总是编译通过运行报错,后面自己做了点小小修改后才可以运行。这部分的代码主要是参照上面的链接的。

最后就上实验的运行结果及代码:


代码(写得比较粗糙,没加工):





本来是想通过质心来写字或是画画的,然后通过一些简单的手指进行一些操作,比如保存图片等等,但是质心位置不稳定,效果不怎么好就没做了。后来想想可以改改,比如用指尖,或是脱离这个手势,简单的识别笔的顶端来画,效果应该会好点。

要绘制质心运动轨迹,需要先使用OpenCV进行图像处理,然后进行轮廓检测,从而得到轮廓的质心坐标。接下来,将质心坐标存储到一个数组中,并使用OpenCV的绘图函数将质心轨迹绘制出来。 以下是一个示例代码: ```python import cv2 import numpy as np cap = cv2.VideoCapture(0) # 定义颜色和字体 color = (0, 255, 0) font = cv2.FONT_HERSHEY_SIMPLEX # 创建空的质心坐标数组 points = [] while True: ret, frame = cap.read() # 转换成灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 进行二值化处理 ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY) # 轮廓检测 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓 for cnt in contours: # 计算轮廓的质心坐标 M = cv2.moments(cnt) if M["m00"] != 0: cx = int(M["m10"] / M["m00"]) cy = int(M["m01"] / M["m00"]) # 将质心坐标加入数组 points.append((cx, cy)) # 绘制当前质心位置 cv2.circle(frame, (cx, cy), 5, color, -1) # 绘制质心轨迹 for i in range(1, len(points)): cv2.line(frame, points[i - 1], points[i], color, 2) # 显示图像 cv2.imshow('frame', frame) # 按下q键退出 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头并销毁所有窗口 cap.release() cv2.destroyAllWindows() ``` 上述代码通过捕获摄像头图像,检测并绘制轮廓质心,并将质心坐标存储到数组中。然后,通过绘制质心轨迹,将所有质心位置连接起来形成轨迹。最后,通过OpenCV的窗口显示图像,并等待用户按下q键退出程序。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值