使用MATLAB进行BP神经网络的股票价格预测
股票价格预测一直是金融领域中的一个重要问题。近年来,BP(Back Propagation)神经网络成为了一种常用的预测工具,它具有很强的非线性逼近能力。在本文中,我们将使用MATLAB编写BP神经网络来预测股票价格。
首先,我们需要准备股票价格的历史数据作为训练集。一般来说,我们需要包含多个特征的数据集,例如开盘价、最高价、最低价、收盘价等。这些数据可以从金融数据提供商或者在线金融平台上获取。
接下来,我们将使用MATLAB的神经网络工具箱来构建BP神经网络模型。首先,我们需要创建一个新的神经网络对象:
net = newff(minmax(input), [10 1]