MATLAB环境下基于神经网络的股票价格预测

本文探讨了金融时间序列预测中的随机漫步理论、有效市场假说以及非随机漫步理论,指出在量化投资和神经网络的支持下,股票价格预测并非不可能。以MATLABR2018A为例,展示了基于神经网络的股票价格预测方法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

金融时间序列的预测一直以来都是金融界和学术界研究的热点和难点。1959年,Osborne以物理学的布朗运动原理作为研究视角提出了随机漫步理论,该理论认为股票价格形成是市场对随机到来的事件信息作出的反应,股票价格的变化类似于“布朗运动”,具有随机漫步的特点,其变动路径没有任何规律可循。因此该理论认为股票价格的波动是不可预测的。

1970年,诺贝尔经济学奖得主Fama提出了有效市场假说,该理论认为投资者都是理性的,在法律健全、功能良好、透明度高、竞争充分的证券市场中,一切有价值的信息已经及时、准确、充分地反映在股价走势之中。因此根据这一理论,股票价格是不可预测的,任何分析方法都不能有效地预知价格的趋势。但是有学者针对随机漫步理论和有效市场假说提出了截然相反的观点。1999年,Lo和Mackinlay提出非随机漫步理论,该理论认为股票价格的变动并不会遵循随机漫步理论。非随机漫步理论运用经济学模型对历史数据进行建模,归纳总结股价运行的规律,依据规律进行投资可以获得高于市场总体水平的回报率。因此该理论认为股票价格是可以预测的。

1971年,美国巴克莱投资管理公司发行世界上第一只被动管理的指数基金,这标志着量化投资的开始。量化投资成为美国市场中的一种重要投资方式。在2009年,美国量化投资的比重上升到30%以上。2012年美国股票市场约有85%的交易是通过算法交易完成的。1988年,数据家JamesSimons成立了大奖章基金,该基金运用数据量化模型进行投资,自成立以来取得平均每年34%的回报。非随机漫步理论和量化投资的实际运用说明了股票价格的预测存在可行性。

本项目为MATLAB环境下基于神经网络的股票价格预测。

程序运行环境为MATLAB R2018A,执行基于神经网络的股票价格预测。

 

代码见评论区。 

代码见评论区。 

代码见评论区。 

openVal = cell2mat(val_data(1, 2));
openVal = openVal';
highVal = cell2mat(val_data(1, 3));
highVal = highVal';
lowVal = cell2mat(val_data(1, 4));
lowVal = lowVal';
closeVal = cell2mat(val_data(1, 5));
closeVal = closeVal';
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值