感觉跟上次那个FFT的题一样,思维难度不小,但是如果做过这种套路的题应该还是很容易想到的。
题目:
给你n个点,然后输出n个数,第i个数表示选出i个点,使得满足原点到每个点的距离最短。
注意这里的最短意思是,原点就算是迁移到其他的点,距离不会变的更短。距离指的是曼哈顿距离。
首先要注意一个很显然的性质(但是我没有想到),就是,如果要满足上述条件,那么原点必须是中点。中点的定义就是:(0,0)左边的点个数等于右边的点个数,上边的点个数等于下边的点个数。
但是怎么才能联想到多项式呢?
我们想答案,朴素的想。既然已经知道要是中点了,我们把平面分成四个象限,因为要满足上面的性质,所以我们每次要么从1 3各选一个,要么从2 4各选一个。而且,显然奇数答案是0。
那么假设现在求选4个点的答案,可以是1 3选4个,2 4选0个,1 3选2个,2 4选2个,1 3选0个 2 4选4个。
设f[i]表示1 3选i个的答案,g[i]表示1 3选i个的答案,那么ans[4] = f[4]g[0] + f[2]g[2] + f[0]g[4]
因为奇数答案为0,偶数才有答案,我们把ans[i]表示2*i的答案,fg 同理,那么
ans[2] = f[0]g[2] + f[1]g[1] + f[2]g[0];
卷积出现了!FFT,取模,NTT。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<ctime>
#define up(i,x,y) for(int i = x;i <= y;i ++)
#define down(i,x,y) for(int i = x;i >= y;i --)
#define mem(a,b) memset((a),(b),sizeof(a))
#define mod(x) ((x)%MOD)
#define lson p<<1
#define rson p<<1|1
using namespace std;
typedef long long ll;
const int SIZE = 300005;
const int INF = 2147483640;
const double eps = 1e-8;
inline void RD(int &x)
{
x = 0; char c; c = getchar();
bool flag = 0;
if(c == '-') flag = 1;
while(c < '0' || c > '9') {if(c == '-') {flag = 1;} c = getchar();}
while(c >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0',c = getchar();
}
int t;
const int N=300005;
const ll mod=7340033ll;
const ll OT = 3ll;//原根
ll a[N],b[N];
ll KSM(ll a,ll b)
{
ll t=1;
while (b)
{
if (b&1)
t=(t*a)%mod;
b>>=1;
a=(a*a)%mod;
}
return t;
}
inline ll get(ll a,ll n)
{
return KSM(a,n-2);
}
ll divv[SIZE];
ll fac[SIZE],facdivv[SIZE];
void init()
{
divv[1] = 1;
for(int i = 2;i <= 100000;i ++)
{
divv[i] = get((ll)i,mod);
// printf("i,divv : %d %d\n",i,divv[i]);
}
fac[0] = 1ll;
fac[1] = 1ll;
facdivv[1] = 1ll;
facdivv[0] = 1ll;
for(int i = 2;i <= 100000;i ++)//阶乘
{
fac[i] = fac[i-1] * (ll)i % mod;
facdivv[i] = facdivv[i-1] * divv[i] % mod;
}
}
ll C(ll a,ll b)
{
// if(b == a) return 1;
ll ret = ((fac[a] * facdivv[b] % mod) * facdivv[a-b] % mod)%mod;
return ret;
}
void NTT(int n,ll *a,int opt)
{
int i,j=0,k;
for (i=0;i<n;i++)
{
if (i>j) swap(a[i],a[j]);
for (int l=n>>1;(j^=l)<l;l>>=1);
}
for (i=1;i<n;i<<=1) //每次合并的小区间
{
ll wn=KSM(OT,(mod-1)/(i<<1)); ///(mod-1)/(i<<1)
int m=i<<1;
for (j=0;j<n;j+=m)
{
ll w=1;
for (k=0;k<i;k++,w=(w*wn)%mod)
{
ll z=(a[j+i+k]*w)%mod;
a[i+j+k]=(a[j+k]-z+mod)%mod;
a[j+k]=(a[j+k]+z)%mod;
}
}
}
if (opt==-1) reverse(a+1,a+n); ///
}
int cas = 0;
int n;
ll num[5];
ll f[SIZE],g[SIZE];
int x,y;
ll fn;
int main(int argc, char const *argv[])
{
init();
scanf("%d",&t);
while(t--)
{
cas ++;
scanf("%d",&n);
mem(num,0);
mem(f,0);
mem(g,0);
f[0] = g[0] = 1;
for(int i = 1;i <= n;i ++)
{
scanf("%d%d",&x,&y);
if(x > 0 && y > 0) num[1] ++;
else if(x < 0 && y > 0) num[2] ++;
else if(x < 0 && y < 0) num[3] ++;
else num[4] ++;
}
// printf("%lld %lld %lld %lld\n",num[1],num[2],num[3],num[4]);
ll up1 = min(num[1],num[3]);
ll up2 = min(num[2],num[4]);
// printf("%lld %lld\n",up1,up2);
for(ll i = 1;i <= up1;i ++) f[i] = C(num[1],i)*C(num[3],i)%mod;
for(ll i = 1;i <= up2;i ++) g[i] = C(num[2],i)*C(num[4],i)%mod;
// printf("f[1] %lld\n",f[1]);
fn=1;
while (fn<=up1+up2) fn<<=1;
NTT(fn,f,1); NTT(fn,g,1);
for (int i=0;i<=fn;i++) f[i]=(f[i]*g[i])%mod;
NTT(fn,f,-1);
ll t=KSM(fn,mod-2ll);
for (int i=0;i<fn;i++) f[i]=(f[i]*t)%mod;
printf("Case %d:\n",cas);
for(int i = 1;i <= n/2;i ++)
{
printf("0 %lld",f[i]);
if(i != n/2) printf(" ");
}
if(n%2 == 1) printf(" 0");
printf("\n");
}
return 0;
}
/*
4
3
-1 -1
1 1
2 2
4
1 1
-1 1
1 -1
-1 -1
3
-1 -1
1 1
2 2
4
1 1
-1 1
1 -1
-1 -1
*/