UVALive - 7343 Design New Capital NTT 快速数论变换

题目链接

感觉跟上次那个FFT的题一样,思维难度不小,但是如果做过这种套路的题应该还是很容易想到的。

题目:

给你n个点,然后输出n个数,第i个数表示选出i个点,使得满足原点到每个点的距离最短。

注意这里的最短意思是,原点就算是迁移到其他的点,距离不会变的更短。距离指的是曼哈顿距离。


首先要注意一个很显然的性质(但是我没有想到),就是,如果要满足上述条件,那么原点必须是中点。中点的定义就是:(0,0)左边的点个数等于右边的点个数,上边的点个数等于下边的点个数。

但是怎么才能联想到多项式呢?

我们想答案,朴素的想。既然已经知道要是中点了,我们把平面分成四个象限,因为要满足上面的性质,所以我们每次要么从1 3各选一个,要么从2 4各选一个。而且,显然奇数答案是0。

那么假设现在求选4个点的答案,可以是1 3选4个,2 4选0个,1 3选2个,2 4选2个,1 3选0个 2 4选4个。

设f[i]表示1 3选i个的答案,g[i]表示1 3选i个的答案,那么ans[4] = f[4]g[0] + f[2]g[2] + f[0]g[4]

因为奇数答案为0,偶数才有答案,我们把ans[i]表示2*i的答案,fg 同理,那么

ans[2] = f[0]g[2] + f[1]g[1] + f[2]g[0];

卷积出现了!FFT,取模,NTT。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<queue>
#include<stack>
#include<map>
#include<ctime>
#define up(i,x,y) for(int i = x;i <= y;i ++)
#define down(i,x,y) for(int i = x;i >= y;i --)
#define mem(a,b) memset((a),(b),sizeof(a))
#define mod(x) ((x)%MOD)
#define lson p<<1
#define rson p<<1|1
using namespace std;
typedef long long ll;
const int SIZE = 300005;
const int INF = 2147483640;
const double eps = 1e-8;

inline void RD(int &x)
{
    x = 0;  char c; c = getchar();
    bool flag = 0;
    if(c == '-')    flag = 1;
    while(c < '0' || c > '9')   {if(c == '-')   {flag = 1;} c = getchar();}
    while(c >= '0' && c <= '9') x = (x << 1) + (x << 3) + c - '0',c = getchar();
}

int t;
const int N=300005;
const ll mod=7340033ll;
const ll OT = 3ll;//原根
ll a[N],b[N];

ll KSM(ll a,ll b)
{
    ll t=1;
    while (b)
    {
        if (b&1)
           t=(t*a)%mod;
        b>>=1;
        a=(a*a)%mod;
    }
    return t;
}

inline ll get(ll a,ll n)
{
    return KSM(a,n-2);
}

ll divv[SIZE];
ll fac[SIZE],facdivv[SIZE];

void init()
{
	divv[1] = 1;
	for(int i = 2;i <= 100000;i ++)
	{
		divv[i] = get((ll)i,mod);
	//	printf("i,divv : %d %d\n",i,divv[i]);
	}
	fac[0] = 1ll;
	fac[1] = 1ll;
	facdivv[1] = 1ll;
	facdivv[0] = 1ll;
	for(int i = 2;i <= 100000;i ++)//阶乘
	{
		fac[i] = fac[i-1] * (ll)i % mod;
		facdivv[i] = facdivv[i-1] * divv[i] % mod;
	}
}

ll C(ll a,ll b)
{
//	if(b == a)	return 1;
	ll ret = ((fac[a] * facdivv[b] % mod) * facdivv[a-b] % mod)%mod;
	return ret;
}

void NTT(int n,ll *a,int opt)
{
    int i,j=0,k;
    for (i=0;i<n;i++)
    {
        if (i>j) swap(a[i],a[j]);
        for (int l=n>>1;(j^=l)<l;l>>=1);
    }
    for (i=1;i<n;i<<=1)  //每次合并的小区间
    {
        ll wn=KSM(OT,(mod-1)/(i<<1));   ///(mod-1)/(i<<1)
        int m=i<<1;
        for (j=0;j<n;j+=m)
        {
            ll w=1;
            for (k=0;k<i;k++,w=(w*wn)%mod)
            {
                ll z=(a[j+i+k]*w)%mod;
                a[i+j+k]=(a[j+k]-z+mod)%mod;
                a[j+k]=(a[j+k]+z)%mod;
            }
        }
    } 
    if (opt==-1) reverse(a+1,a+n);  ///
}

int cas = 0;
int n;
ll num[5];
ll f[SIZE],g[SIZE];
int x,y;
ll fn;
int main(int argc, char const *argv[])
{
	init();
	scanf("%d",&t);
	while(t--)
	{
		cas ++;
		scanf("%d",&n);
		mem(num,0);
		mem(f,0);
		mem(g,0);
		f[0] = g[0] = 1;
		for(int i = 1;i <= n;i ++)
		{
			scanf("%d%d",&x,&y);
			if(x > 0 && y > 0)	num[1] ++;
			else if(x < 0 && y > 0)	num[2] ++;
			else if(x < 0 && y < 0)	num[3] ++;
			else num[4] ++;
		}
	//	printf("%lld %lld %lld %lld\n",num[1],num[2],num[3],num[4]);
		ll up1 = min(num[1],num[3]);
		ll up2 = min(num[2],num[4]);
	//	printf("%lld %lld\n",up1,up2);
		for(ll i = 1;i <= up1;i ++)	f[i] = C(num[1],i)*C(num[3],i)%mod;
		for(ll i = 1;i <= up2;i ++)	g[i] = C(num[2],i)*C(num[4],i)%mod;
	//	printf("f[1] %lld\n",f[1]);
		fn=1;
 	    while (fn<=up1+up2) fn<<=1;
 	    NTT(fn,f,1); NTT(fn,g,1);
	    for (int i=0;i<=fn;i++) f[i]=(f[i]*g[i])%mod;
	    NTT(fn,f,-1);
		ll t=KSM(fn,mod-2ll);
	    for (int i=0;i<fn;i++) f[i]=(f[i]*t)%mod;
	    printf("Case %d:\n",cas);
	    for(int i = 1;i <= n/2;i ++)
	    {
	    	printf("0 %lld",f[i]);
	    	if(i != n/2)	printf(" ");
	    }
	    if(n%2 == 1)	printf(" 0");
	    printf("\n");
	}	
	return 0;
}

/*
4
3
-1 -1
1 1
2 2
4
1 1
-1 1
1 -1
-1 -1
3
-1 -1
1 1
2 2
4
1 1
-1 1
1 -1
-1 -1
*/
数据中心机房是现代信息技术的核心设施,它承载着企业的重要数据和服务,因此,其基础设计与规划至关重要。在制定这样的方案时,需要考虑的因素繁多,包括但不限于以下几点: 1. **容量规划**:必须根据业务需求预测未来几年的数据处理和存储需求,合理规划机房的规模和设备容量。这涉及到服务器的数量、存储设备的容量以及网络带宽的需求等。 2. **电力供应**:数据中心是能源消耗大户,因此电力供应设计是关键。要考虑不间断电源(UPS)、备用发电机的容量,以及高效节能的电力分配系统,确保电力的稳定供应并降低能耗。 3. **冷却系统**:由于设备密集运行,散热问题不容忽视。合理的空调布局和冷却系统设计可以有效控制机房温度,避免设备过热引发故障。 4. **物理安全**:包括防火、防盗、防震、防潮等措施。需要设计防火分区、安装烟雾探测和自动灭火系统,设置访问控制系统,确保只有授权人员能进入。 5. **网络架构**:规划高速、稳定、冗余的网络架构,考虑使用光纤、以太网等技术,构建层次化网络,保证数据传输的高效性和安全性。 6. **运维管理**:设计易于管理和维护的IT基础设施,例如模块化设计便于扩展,集中监控系统可以实时查看设备状态,及时发现并解决问题。 7. **绿色数据中心**:随着环保意识的提升,绿色数据中心成为趋势。采用节能设备,利用自然冷源,以及优化能源管理策略,实现低能耗和低碳排放。 8. **灾难恢复**:考虑备份和恢复策略,建立异地灾备中心,确保在主数据中心发生故障时,业务能够快速恢复。 9. **法规遵从**:需遵循国家和地区的相关法律法规,如信息安全、数据保护和环境保护等,确保数据中心的合法运营。 10. **扩展性**:设计时应考虑到未来的业务发展和技术进步,保证机房有充足的扩展空间和升级能力。 技术创新在数据中心机房基础设计及规划方案中扮演了重要角色。例如,采用虚拟化技术可以提高硬件资源利用率,软件定义网络(SDN)提供更灵活的网络管理,人工智能和机器学习则有助于优化能源管理和故障预测。 总结来说,一个完整且高效的数据中心机房设计及规划方案,不仅需要满足当前的技术需求和业务目标,还需要具备前瞻性和可持续性,以适应快速变化的IT环境和未来可能的技术革新。同时,也要注重经济效益,平衡投资成本与长期运营成本,实现数据中心的高效、安全和绿色运行。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值