目录
今天天气多云转晴。
今天做了一道跳跃游戏的题,利用的是贪心思想(对于某个变量的动态更新):
- 在遍历的过程中,根据遍历的对象不一样,判断目标值(需要动态更新的变量)是否满足更新的条件,如果满足就更新,不满足就继续遍历。并且判断是否到达了遍历结束的条件。
题目
给定一个非负整数数组,你最初位于数组的第一个位置。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个位置。
示例 1:
输入: [2,3,1,1,4]
输出: true
解释: 我们可以先跳 1 步,从位置 0 到达 位置 1, 然后再从位置 1 跳 3 步到达最后一个位置。
示例 2:
输入: [3,2,1,0,4]
输出: false
解释: 无论怎样,你总会到达索引为 3 的位置。但该位置的最大跳跃长度是 0 , 所以你永远不可能到达最后一个位置。
解题思路
1、对于任意位置y,怎么能到达它呢?
如果存在位置x,满足x+nums[x] >= y,那么y就是能到达的。因此,可以考虑动态更新一个变量furthest(要么是x+nums[x],要么是上一轮的furthest):遍历过程中目前最远可到达的位置
2、动态更新变量furest怎么更新?
对于一个位置x,如果 x <=furthest,说明x可到达。并且furthest需要更新,需要比较上一轮的furthest和x+nums[x],取这两个中较大的一个为最远可到达距离。
代码
class Solution {
public boolean canJump(int[] nums) {
int n = nums.length;
if(n==1){
return true;
}
int furthest = 0;
for(int i = 0; i < n; ++i){
if(i <= furthest){
// 当前位置在最新的最远到达位置上,更新最远达到位置
furthest = Math.max(i + nums[i], furthest);
if(furthest >= n-1){
// 最远到达位置已经超过最后一个位置n-1了,直接返回true
return true;
}
}
}
return false;
}
}
时间复杂度:O(n),其中 n为数组的大小。只需要访问 nums 数组一遍,共 n 个位置。
空间复杂度:O(1),不需要额外的空间开销。