1、什么是数据可视化
数据可视化:
创建并研究数据的可视化表达(Visual representation)
能够帮助思考,基于人们各自背景和知识储备,找到信息兴趣点,提出新的分析目标
2、为什么要数据可视化
信息科学领域面临的一个巨大挑战是数据爆炸。 互联网使得信息的采集、传播的速度和规模达到空前的水平,实现了全球的信息共享与交互。
变化盲视(Change Blindness)
当我们同时经历着多样事物发生时,仅仅关注其中一样而忽视了其他事物的发生而且不知道它们的发生,我们称这种现象为变化盲视。
它体现了人的视觉信息处理和认知的局限性
数据可视化原理基于心理学研究
人类从外界获取信息的 83%来自视觉,11%来自听觉,3.5%来自触觉,1%来自味觉。
视觉的信息处理带宽在人类所有感觉当中最高,为100Mb/s,听觉只有 100b/s。
3、数据可视化简史
4、数据可视化的分类
数据可视化主要包含三个分支:科学可视化、信息可视化、可视分析学
科学可视化:通常需要对数据和模型进行解释、操作与处理,旨在寻找发现其中的模式、特点、关系、演化规律及异常情况等。
-通常是基于物理数据或模型,带有空间信息和几何信息的三维测量数据
-主要领域:科学工程领域,如计算机模拟,医学影像数据等
-主要挑战:挖掘几何拓扑和形状特征
-主要分类:标量场可视化、向量场可视化、张量场可视化
信息可视化:处理对象是非几何、非结构化的抽象数据集合(如文本、图表、层次结构、地图、软件、复杂系统等)。关键问题是在有限的空间中以直观的方式传达大量信息。
-时空数据可视化
-层次与网络结构数据可视化
-文本数据可视化
-跨媒体数据可视化
-多变量数据可视化
如何将高维数据展现在二维平面是可视化的挑战之一
可视分析学:一门以可视交互界面为基础的分析推理科学。
-结合了人机交互、可视化与数据挖掘
-解决需要人参与和理解的多种决策问题
可视分析学包含的研究内容
可见数据可视化的三个分支并不存在清晰的边界,只是各有侧重
5、数据可视化的功能
记录信息 分析推理 抽象展示 展示隐含模式 交流思想
记录信息:信息成像或草图记载是将浩如烟海的信息记录成文、世代传播的有效方法之一
地图是记录和传递空间信息的基本手段
分析推理:可视化扩充了人脑的记忆,帮助人脑形象理解和分析面临任务,显著提高分析信息的效率
更复杂的分析推理:地球系统数值模拟(国家十三五重大科学装置项目,投资13亿,其中可视化部分7000万)
抽象展示
展示隐含模式
John Snow约翰·斯诺(1813-1858),英国麻醉学家、流行病学家,被认为是麻醉医学和公共卫生医学的开拓者。首次提出预防霍乱的措施,对1854年伦敦西部西敏市苏活区霍乱爆发的研究被认为是流行病学研究的先驱。
1854年伦敦再次暴发霍乱的时候,约翰·斯洛着手准备对此进行调研。当霍乱在贫民区迅速蔓延的时候,约翰·斯洛就开始收集资料。他发现特别在两条街道上霍乱流行的很严重,在10天之内就死去了500多人。 他在一张地图上标明了所有死者住过的地方。这提供了一条说明霍乱起因的很有价值的线索。许多死者是住在宽街的水泵附近(特别是这条街上16、37、38、40号)。他发现有些住宅(如宽街上20号和21号以及剑桥街上的8号和9号)却无人死亡。他以前没预料到这种情况,所以他决定深入调查。他发现,这些人都在剑桥街7号的酒馆里打工,而酒馆为他们免费提供啤酒喝,因此他们没有喝从宽街水泵抽上来的水。看来水是罪魁祸首。
《让子弹飞》人物关系互动图
《让子弹飞》人物关系复杂,情节跌宕,相当的纠缠。用PlotWeaver绘制人物之间的互动和情节的发展,横向表示时间,每条线代表了一个人物,线的长短根据人物出现的长度,可以看到三个主角里只有张麻子活到了最后。纵向表示地点,线的走向根据故事发生的地点,在同一地点出现的人物,他们的线也聚集在一块,比如进城的时候,除了黄四郎和胡千在远远窥视,其他主要人物都集中在城门。故事的最后,花姐带走了张麻子的弟兄。这个可视化通过人物之间的互动把故事情节都串在了一起。
交流思想
6、数据可视化的目标
真:即真实性,是否正确反应了数据的本质,以及对所反映事物和规律有无正确的感受很认识。数据可视化之真是其基石。
善:即倾向性,指可视化所表达的意象对于社会和生活具有什么意义和影响。
加拿大可视化专家Tamara Munzner认为,可视化的终极目标在于帮助公众理解人类社会发展和自然环境的现状,实现政府与智能部门运行的透明。
美:即可视化的艺术完美性,指其形式和内容是否和谐统一,是否有艺术个性,是否有创新和发展。