深度学习动态识别过程

1、划分数据集为训练,验证,测试。

2、形成pkl文件

3、跑模型CRNN得到结果96%的最高准确率(老师让做交叉验证)

4、准备用训练好的参数跑测试集看一下平均准确率。

5、再试试C3D模型,做一下模型间的交叉验证。 

6、跑3DCNN取7帧关键帧,第一帧与六帧最后一帧得到正确率85%,再尝试使用如下方式跑3DCNN

if len(dir) > len(self.frames):
   # file_dirs里面已经存放了所有的帧数,若小于可以直接在上面添加,若大于?
   for i in range(len(self.frames)):
        file_dirs.append(dir[math.floor(((i+1)/len(self.frames))*len(dir))-1])
else:
   file_dirs = os.listdir(selected_folder)
        for i in range(len(dir), len(self.frames)):
             file_dirs.append(file_dirs[-1])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值