数学规划模型

来源:数学建模清风学习内容整理


一、概述

(1)什么是数学规划?

  • 求目标函数在一定约束条件下的极值问题

        数学规划是运筹学的一个分支,用来研究:在给定的条件下(约束条件),如何按照某一衡量指标(目标函数)来寻求计划、管理工作中的最优方案。

(2)数学规划的一般形式

在这里插入图片描述

(3)数学规划的分类

① 线性规划(Linear programming)
    如果目标函数 f ( x ) f(x) f(x)和约束条件均是决策变量的线性表达式,那么此时的数学规划问题就属于线性规划。

② 非线性规划(nonlinear programming)
    当目标函数 f ( x ) f(x) f(x)或者约束条件中有一个是决策变量 x x x的非线性表达式,那么此时的数学规划问题就属于非线性规划。

③ 整数规划(integer programming)
    整数规划是一类要求变量取整数值的数学规划(线性整数规划和非线性整数规划)。

④ 0-1规划(0-1 programming)
    整数规划的特例,整数变量的取值只能为0和1。


二、线性规划问题的求解

(1)Matlab中线性规划的标准型

在这里插入图片描述
在这里插入图片描述

% 1题代码
[x,fval]=linprog(c,A,b,[],[],lb)    %不写ub意味着不存在上界约束

% 2题代码
[x,fval]=linprog(c,A,b,Aeq,beg,lb)

% 3题代码
[x,fval]=linprog(c,A,b,Aeq,beg,lb)
fval=-fval

(2)Matlab求解线性规划的函数

[x,fval]=linprog(c,A,b,Aeq,beq,lb,ub,xo)

    ① xo表示给定Matlab迭代求解的初始值(一般不用给);
    ② c,A,b,Aeq,beq,lb,ub的意义和标准型中的意义一致 ;
    ③ 若不存在不等式约束,可用 [ ] 替代 Ab
    ④ 若不存在等式约束,可用 [ ] 替代 Aeqbeq
    ⑤ 若某个 x i x_i xi无下届或上届,则设置 lb(i)=-inf,ub(i)=+inf
    ⑥ 返回的 x x x表示最小值处的 x x x取值;fval 表示最优解处时取得的最小值 ;
    ⑦ 不是所有的线性规划问题都有唯一解,可能无解或有无穷多的解 ;
    ⑧ 如果求的是最大值,别忘了在最后给 fval 加一个负号 ;


三、线性规划的典型例题

(1)例题一:生产决策问题

在这里插入图片描述

%% 生产决策问题
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
c = zeros(9,1); % 初始化目标函数的系数向量全为0
c(1) = 1.25 -0.25 -300/6000*5;  % x1前面的系数是c1
c(2) = 1.25 -0.25 -321/10000*7;
c(3) = -250 / 4000 * 6;
c(4)  = -783/7000*4;
c(5) = -200/4000 * 7;
c(6) = -300/6000*10;
c(7) = -321 / 10000 * 9;
c(8) = 2-0.35-250/4000*8;
c(9) = 2.8-0.5-321/10000*12-783/7000*11;
c = -c;  % 我们求的是最大值,所以这里需要改变符号
% (2) 不等式约束
A = zeros(5,9);
A(1,1) = 5;  A(1,6) = 10;
A(2,2) = 7;  A(2,7) = 9; A(2,9) = 12;
A(3,3) = 6;  A(3,8) = 8;
A(4,4) = 4;  A(4,9) = 11;
A(5,5) = 7;  
b = [6000 10000 4000 7000 4000]';
% (3) 等式约束
Aeq = [1 1 -1 -1 -1 0 0 0 0;
            0 0 0 0 0 1 1 -1 0];
beq = [0 0]';
%(4)上下界
lb = zeros(9,1);

% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
fval = -fval
% fval =
%           1146.56650246305
%  注意,本题应该是一个整数规划的例子,我们在后面的整数规划部分再来重新求解。
intcon = 1:9;
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb)
fval = -fval


(2)例题二:投料问题

在这里插入图片描述

在这里插入图片描述

%% 投料问题
clear,clc
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% (1) 系数向量
a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
b=[1.25  0.75  4.75	5  6.5  7.25];   % 工地的纵坐标
x = [5  2];  % 料场的横坐标
y = [1  7];  % 料场的纵坐标
c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
for  j =1:2
    for i = 1:6
        c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
    end
end
% (2) 不等式约束
A =zeros(2,12);
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,12);  
for i = 1:6
    Aeq(i,i) = 1;  Aeq(i,i+6) = 1;
end
% Aeq = [eye(6),eye(6)]  % 两个单位矩阵横着拼起来
beq = [3 5 4 7 6 11]';  % 每个工地的日需求量
%(4)上下界
lb = zeros(12,1);

% 进行求解
[x fval] = linprog(c, A, b, Aeq, beq, lb)
x = reshape(x,6,2)  % 将x变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1)

% fval =
%           135.281541790676

四、非线性规划问题的求解

(1)Matlab中非线性规划的标准型

在这里插入图片描述

在这里插入图片描述


(2)Matlab中求解非线性规划的命令

[x,fval]=fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)

(1) 非线性规划中对于初始值 x 0 x_0 x0 的选取非常重要,因为非线性规划的算法求解出来的是一个局部最优解。
         (线性规划不存在这个问题)
(2) 如果要求“全局最优解”,有两种思路:
            ① 给定不同的初始值,在里面找到最优解;
            ② 先用蒙特卡罗模拟,得到一个蒙特卡罗解,再将这个解作为初始值来求最优解;
(3)“option” 选项可以给定求解的算法,一共有四种:
                      interior-point(内点法)
                      sqp(序列二次规划法)
                      active-set(有效集法)
                      trust-region-reflective(信赖域反射算法)
(4) 不同的算法有其各自的优缺点和适用情况,我们可以改变求解的算法来看求解的结果是否变好;
(5 )“ @fun ” 表示目标函数,要编写一个独立的“.m”文件储存目标函数:

funciton f=fun(x)       % 注:1.fun可以任意取名;
         f= ...         %    2.f也可以任意取名,但返回的f和函数内部的f得完全一致;
end                     %    3.这里的x实际上是表示决策变量的向量,其行列方向取决于初始值x;
                        %    4.调用函数:fmincon(@fun, ... ) 求解

(6)“@nonlfun”表示非线性部分的约束,同样得编写一个独立的 “.m” 文件储存非线性约束条件:

function[c,ceq]=nonlfun(x)             %  1. nonlfun同样可任意取名,不和上面的fun相同就可,保存的.m文件也得是这个名字;
        c=[非线性不等式约束1;          %  2. c、ceq中可能有多个约束,因此写成列向量的形式;
           非线性不等式约束p;]         %  3. 若不存在非线性不等式约束,则可令 c=[];
      ceq=[非线性等式约束1;            %  4. 调用函数:fmincon(...,@nonlfun,options)求解
           非线性等式约束q;         
end

(7) 注意要把下标改写为括号,例如: f = x 1 2 + 3 x 2 f=x_1^2+3x_2 f=x12+3x2 写成matlab能识别的形式:f=x(1)^2+3*x(2);
(8) 若不存在某种约束,则可用 “ [ ] ” 替代,若后面全为 “ [ ] ” 且不指定option(使用默认的求解方法),则 “ [ ] ” 也可以省略掉;


对于例题的matlab使用讲解
  • 主函数
%% 非线性规划的函数
% [x,fval] = fmincon(@fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)
% x0表示给定的初始值(用行向量或者列向量表示),必须得写
% A b表示线性不等式约束
% Aeq beq 表示线性等式约束
% lb ub 表示上下界约束
% @fun表示目标函数
% @nonlfun表示非线性约束的函数
% option 表示求解非线性规划使用的方法
clear;clc
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)

%% 例题1的求解
% max f(x) = x1^2 +x2^2 -x1*x2 -2x1 -5x2
% s.t. -(x1-1)^2 +x2 >= 0 ;  2x1-3x2+6 >= 0
x0 = [0 0];  %任意给定一个初始值 
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1)  % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
fval = -fval
% 一个值得讨论的地方,能不能把线性不等式约束Ax <= b也写到nonlfun1函数中?
% 先把nonlfun1中的c改为下面这样:
% c = [(x(1)-1)^2-x(2); 
%        -2*x(1)+3*x(2)-6];
%  [x,fval] = fmincon(@fun1,x0,[],[],[],[],[],[],@nonlfun1)
% 结果也是可以计算出来的,但并不推荐这样做~

%% 使用其他算法对例题1求解
% edit fmincon  % 查看fmincon的“源代码”
% Matlab2017a默认使用的算法是'interior-point' 内点法
% 使用interior point算法 (内点法)
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval
% 使用SQP算法 (序列二次规划法)
option = optimoptions('fmincon','Algorithm','sqp')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval   %得到-4.358,远远大于内点法得到的-1,猜想是初始值的影响
% 改变初始值试试
x0 = [1 1];  %任意给定一个初始值 
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  % 最小值为-1,和内点法相同(这说明内点法的适应性要好)
fval = -fval  
% 使用active set算法 (有效集法)
option = optimoptions('fmincon','Algorithm','active-set')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)
fval = -fval  
% 使用trust region reflective (信赖域反射算法)
option = optimoptions('fmincon','Algorithm','trust-region-reflective')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval  
% this algorithm does not solve problems with the constraints you have specified. 
% 这说明这个算法不适用我们这个约束条件,所以以后遇到了不能求解的情况,记得更换其他算法试试!!!

%% 选取初始值得到的结果可能会不满足限定条件,出现了一个Bug 因此选择的初始值很重要
x0 = [40.8, 10.8];
option = optimoptions('fmincon','Algorithm','interior-point')
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option)  
fval = -fval  
% https://cn.mathworks.com/help/optim/ug/fmincon.html

%% 生成不同的随机初始值来优化代码,有一定几率会触发上面那个Bug,因此不推荐
n = 10;  % 重复n次
Fval = +inf; X = [0,0];  %初始化最优的结果
A = [-2 3]; b = 6;
for i = 1:n
    x0 = [rand()*10 , rand()*10];  %用随机数生成一个初始值(随机数的范围自己根据题目条件设置) 
    [x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1,option); % 注意 fun1.m文件和nonlfun1.m文件都必须在当前文件夹目录下
    if fval < Fval  % 如果找到了更小的值,那么就代替最优的结果
        Fval = fval;
        X = x;
    end
end
Fval = -Fval
X

%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=10000000; %生成的随机数组数
x1=unifrnd(-100,100,n,1);  % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x1
x2=unifrnd(-100,100,n,1);  % 生成在[-100,100]之间均匀分布的随机数组成的n行1列的向量构成x2
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
    x = [x1(i), x2(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2]
    if ((x(1)-1)^2-x(2)<=0)  & (-2*x(1)+3*x(2)-6 <= 0)     % 判断是否满足条件
        result = -x(1)^2-x(2)^2 +x(1)*x(2)+2*x(1)+5*x(2) ;  % 如果满足条件就计算函数值
        if  result  < fmin  % 如果这个函数值小于我们之前计算出来的最小值
            fmin = result;  % 那么就更新这个函数值为新的最小值
            x0 = x;  % 并且将此时的x1 x2更新为初始值
        end
    end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
A = [-2 3]; b = 6;
[x,fval] = fmincon(@fun1,x0,A,b,[],[],[],[],@nonlfun1)
fval = -fval  



%% 例题二的求解
x0 = [1 1 1];  %任意给定一个初始值 
lb = [0 0 0];  % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2)  % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下
% x =
%          0.552167405729277          1.20325915507969         0.947824046150443
% fval =
%           10.6510918606939



%% 使用蒙特卡罗的方法来找初始值(推荐)
clc,clear;
n=1000000; %生成的随机数组数
x1= unifrnd(0,2,n,1);   % 生成在[0,2]之间均匀分布的随机数组成的n行1列的向量构成x1
x2 = sqrt(2-x1);  % 根据非线性等式约束用x1计算出x2
x3 = sqrt((3-x2)/2); % 根据非线性等式约束用x2计算出x3
fmin=+inf; % 初始化函数f的最小值为正无穷(后续只要找到一个比它小的我们就对其更新)
for i=1:n
    x = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]
    if (-x(1)^2+x(2)-x(3)^2<=0) & (x(1)+x(2)^2+x(3)^2-20<=0)   % 判断是否满足条件
        result =sum(x.*x) + 8 ;  % 如果满足条件就计算函数值
        if  result  < fmin  % 如果这个函数值小于我们之前计算出来的最小值
            fmin = result;  % 那么就更新这个函数值为新的最小值
            x0 = x;  % 并且将此时的x1 x2 x3更新为初始值
        end
    end
end
disp('蒙特卡罗选取的初始值为:'); disp(x0)
lb = [0 0 0];  % 决策变量的下界
[x,fval] = fmincon(@fun2,x0,[],[],[],[],lb,[],@nonlfun2)  % 注意 fun2.m文件和nonfun2.m文件都必须在当前文件夹目录下

%% 例题三的求解(蒙特卡罗模拟那一讲的例题)
clear;clc
% 蒙特卡罗模拟得到的最大值为3445.6014
% 最大值处x1 x2 x3的取值为:
%           22.5823101903968          12.5823101903968          12.1265223966757
A = [1 -2 -2;  1 2 2];  b = [0 72];
x0 = [ 22.58   12.58  12.13];
Aeq = [1 -1 0]; beq = 10;
lb = [-inf 10 -inf];  ub = [inf 20 inf];  
[x,fval] = fmincon(@fun3,x0,A,b,Aeq,beq,lb,ub,[])  % 注意没有非线性约束,所以这里可以用[]替代,或者干脆不写
fval = -fval


% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭
  • 被调用的函数:fun1 (例题一的目标函数)
function f = fun1(x)
    % 注意:这里的f实际上就是目标函数,函数的返回值也是f
    % 输入值x实际上就是决策变量,由x1和x2组成的向量
    % fun1是函数名称,到时候会被fmincon函数调用, 可以任意取名
    % 保存的m文件和函数名称得一致,也要为fun1.m
%      max  f(x) = x1^2 +x2^2 -x1*x2 -2x1 -5x2
    f = -x(1)^2-x(2)^2 +x(1)*x(2)+2*x(1)+5*x(2) ; 
end
  • 被调用的函数:fun2 (例题二的目标函数)
function f = fun2(x)
    %     f = x(1)^2+x(2)^2 +x(3)^2+8 ; 
    f = sum(x.*x) + 8;  % 可别忘了x实际上是一个向量,我们可以使用矩阵的运算符号对其计算
end
  • 被调用的函数:fun3 (例题三的目标函数)
function f = fun3(x)
    f = -prod(x);  % 可别忘了x实际上是一个向量(prod表示连乘符号,用法和sum类似)
end
  • 被调用的函数: nonlfun1 (例题一的非线性约束条件)
function [c,ceq] = nonlfun1(x)
   % 注意:这里的c实际上就是非线性不等式约束,ceq实际上就是非线性等式约束
   % 输入值x实际上就是决策变量,由x1和x2组成的一个向量
   % 返回值有两个,一个是非线性不等式约束c,一个是非线性等式约束ceq
   % nonlfun1是函数名称,到时候会被fmincon函数调用, 可以任意取名,但不能和目标函数fun1重名
   % 保存的m文件和函数名称得一致,也要为nonlfun1.m
%     -(x1-1)^2 +x2 >= 0 
  c = [(x(1)-1)^2-x(2)];   % 千万別写成了: (x1-1)^2 -x2
  ceq = [];  % 不存在非线性等式约束,所以用[]表示
end
  • 被调用的函数:nonlfun2 (例题二的非线性约束条件)
function [c,ceq] = nonlfun2(x)
    % 非线性不等式约束
    c = [-x(1)^2+x(2)-x(3)^2;   % 一定要注意写法的规范,再次强调这里的x是一个向量!不能把x(1)写成x1
            x(1)+x(2)^2+x(3)^2-20];
    % 非线性等式约束
    ceq = [-x(1)-x(2)^2+2;
                x(2)+2*x(3)^2-3]; 
end

五、非线性规划的典型例题

(1)例题一:选址问题

在这里插入图片描述
在这里插入图片描述

  • 主函数
%% 选址问题
clear;clc
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% % (1) 系数向量(原来线性规划问题的写法,我们只需要在此基础上改动一点就可以了)
% a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
% b=[1.25  0.75  4.75	5  6.5  7.25];   % 工地的纵坐标
% x = [5  2];  % 料场的横坐标
% y = [1  7];  % 料场的纵坐标
% c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
% for  j =1:2
%     for i = 1:6
%         c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
%     end
% end
% (2) 不等式约束
A =zeros(2,16);  % 注意这里要改成16
A(1,1:6) = 1;
A(2,7:12) = 1;
b = [20,20]';
% (3) 等式约束
Aeq = zeros(6,16);  % 注意这里要改成16
for i = 1:6
    Aeq(i,i) = 1;  Aeq(i,i+6) = 1;
end
beq = [3 5 4 7 6 11]';  % 每个工地的日需求量
%(4)上下界
lb = zeros(16,1);
% lb = [zeros(12,1); -inf*ones(4,1)];  两个新料场坐标的下界可以设为-inf

% 进行求解
% 注意哦,这里我们只尝试了这一个初始值,大家可以试试其他的初始值,有可能能够找到更好的解。
% 还可以用遗传算法求解
x0 = [3 5 0 7 0 1 0 0 4 0 6 10 5 1 2 7];  % 用第一问的结果作为初始值
[x,fval] = fmincon(@fun5,x0,A,b,Aeq,beq,lb)  % 注意没有非线性约束,所以这里可以用[]替代,或者干脆不写
reshape(x(1:12),6,2)  % 将x的前12个元素变为6行2列便于观察(reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1)
% 新坐标(5.74,4.99) (7.25,7.25)
% fval =
%           89.9231692432933
% 第一问的fval =
%           135.281541790676
135.281541790676 - 89.9231692432933  %  45.3583725473827
  • 被调用的函数
function f = fun5(xx)  % 注意为了避免和下面的x同号,我们把决策变量的向量符号用xx表示(注意xx的长度为16)
    a=[1.25  8.75  0.5  5.75  3  7.25];  % 工地的横坐标
    b=[1.25  0.75  4.75	5  6.5  7.25];   % 工地的纵坐标
    x = [xx(13)  xx(15)];  % 新料场的横坐标
    y = [xx(14)  xx(16)];  % 新料场的纵坐标
    c = [];  % 初始化用来保存工地和料场距离的向量 (这个向量就是我们的系数向量)
    for  j =1:2
        for i = 1:6
            c = [c;  sqrt( (a(i)-x(j))^2 + (b(i)-y(j))^2)];  % 每循环一次就在c的末尾插入新的元素
        end
    end
    % 下面我们要求吨千米数,注意c是列向量,我们计算非线性规划时给定的初始值x0是行向量
    f = xx(1:12) * c;
end

(2)例题二:飞行管理问题

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
                       计算新坐标的示意图

  • 主函数
%% 飞行管理问题
format long g
%%  (1)画六架飞机的位置
clear;clc
figure(1)  % 生成一个图形
box on  % 显示为封闭的盒子
% 绘制飞机的初始位置
data = [150	140	243;
    85	85	236;
    150	155	220.5;
    145	50	159;
    130	150	230;
    0	0	52];
plot(data(:,1),data(:,2),'.r')
axis([0 160,0,160]);% 设置坐标轴刻度范围
hold on;
% 在图上标上注释
for i = 1:6
    txt = ['飞机',num2str(i)];
    text(data(i,1)+2,data(i,2)+2,txt,'FontSize',8)
end
% 把Matlab做出来的图可以导出,然后再放到PPT中画出飞机飞行方向的箭头

%% 求解非线性规划问题
x0 = [0 0 0 0 0 0];  % 初始值
lb = -pi/6*ones(6,1);
ub = pi/6*ones(6,1);
[x,fval] = fmincon(@fun6,x0,[],[],[],[],lb,ub,@nonlfun6)
x = x * 180 / pi    % 将弧度转换为度数
% 定义一:fval = 3.7315° 
% 定义二:  fval = 6.9547((°)^2)
  • 被调用函数:fun6
function f = fun6(delta)   % 决策变量delta为六架飞机调整的角度
   %         f =sum(abs(delta)) * 180 /  pi;   % 目标函数第一种定义:绝对值的和(将弧度转换为度数)
  f = sum(delta .* delta) * (180 /  pi)^2;  % 目标函数第二种定义:平方和(将弧度转换为度数)
end
  • 被调用函数:nonlfun6
function [c,ceq] = nonlfun6(delta)   % 决策变量delta为六架飞机调整的角度
    x = [150 85 150 145 130  0]; % 飞机初始位置的横坐标
    y = [140 85 155  50 150  0]; % 飞机初始位置的纵坐标
    theta = [243 236 220.5 159 230 52] * pi / 180; % 飞机初始的飞行方向角 
    v = 800;  % 飞机速度
    co = cos(theta + delta);  % 包含6个元素的向量
    si = sin(theta + delta);  % 包含6个元素的向量
    % 下面开始计算飞机i和j之间的最短距离(只需要计算矩阵的一半即可)
    d = zeros(6);  % 初始化飞机两两之间的最短距离矩阵
    for i = 2: 6
        for j = 1: i-1
            % 套用我们推导出来的公式计算飞机i和飞机j相距最近的时间
            fenzi = ((y(j)-y(i))*(si(j)-si(i)) +(x(j)-x(i))*(co(j)-co(i))) ;  % 分子
            fenmu =  v * ((co(j)-co(i))^2 + (si(j)-si(i))^2);  % 分母
            t(i,j) =- fenzi / fenmu;
            if t(i,j) <0  
                d(i, j) = 1000; % 此时最初的位置就是相距最近的点,因为最初的时候所有飞机两两之间的距离就大于8,因此未来绝不会相撞,我们令它们的距离为一个特别大的数
            else
                d(i, j) = sqrt((x(j)-x(i)+v*t(i,j)*(co(j)-co(i)))^2+(y(j)-y(i)+v*t(i,j)*(si(j)-si(i)))^2); 
            end 
        end
    end
    % 非线性不等式约束
    c =ones(15,1)*8.000001 - [d(2,1); d(3,1:2)'; d(4,1:3)'; d(5,1:4)'; d(6,1:5)'];  
    % 12个非线性不等式约束: “最短距离>8” 等价于 “8 - 最短距离<0”
    % 注意: 由于Matlab标准型中取的是小于等于号,因此这里取一个比8略大的数:8.000001-最短距离<=0 
    ceq = [];  % 没有非线性等式约束
end

六、整数规划

在这里插入图片描述


(1)Matlab中线性整数规划求解

[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)

在这里插入图片描述

在这里插入图片描述

%% 线性整数规划问题
%% 例1
c=[-20,-10]';
intcon=[1,2];  % x1和x2限定为整数
A=[5,4;
      2,5];
b=[24;13];
lb=zeros(2,1);  
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)
fval = -fval

%% 例2
c=[18,23,5]';
intcon=3;  % x3限定为整数
A=[107,500,0;
      72,121,65;
      -107,-500,0;
      -72,-121,-65];
b=[50000;2250;-500;-2000];
lb=zeros(3,1);
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)

%% 例3
c=[-3;-2;-1]; intcon=3; % x3限定为整数
A=ones(1,3); b=7;
Aeq=[4 2 1]; beq=12;
lb=zeros(3,1); ub=[+inf;+inf;1]; %x(3)为0-1变量
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)


(2)Matlab中线性 0 - 1 规划求解

  • 0 -1 规划无非就是把上界定为1,下届定为0的整数规划 (限制 lb、un)

在这里插入图片描述


七、整数规划的典型例题

(1)例题一:背包问题

在这里插入图片描述

%% 背包问题(货车运送货物的问题)
c = -[540 200 180 350 60 150 280 450 320 120];  % 目标函数的系数矩阵(最大化问题记得加负号)
intcon=[1:10];  % 整数变量的位置(一共10个决策变量,均为0-1整数变量)
A = [6 3 4 5 1 2 3 5 4 2];  b = 30;   % 线性不等式约束的系数矩阵和常数项向量(物品的重量不能超过30)
Aeq = []; beq =[];  % 不存在线性等式约束
lb = zeros(10,1);  % 约束变量的范围下限
ub = ones(10,1);  % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
fval = -fval

(2)例题二:指派问题

在这里插入图片描述

%% 指派问题(选择队员去进行游泳接力比赛)
clear;clc
c = [66.8 75.6 87 58.6 57.2 66 66.4 53 78 67.8 84.6 59.4 70 74.2 69.6 57.2 67.4 71 83.8 62.4]';  % 目标函数的系数矩阵(先列后行的写法)
intcon = [1:20];  % 整数变量的位置(一共20个决策变量,均为0-1整数变量)
% 线性不等式约束的系数矩阵和常数项向量(每个人只能入选四种泳姿之一,一共五个约束)
A = [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
       0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;
       0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;
       0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;
       0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1];
% A = zeros(5,20);
% for i = 1:5
%     A(i, (4*i-3): 4*i) = 1;
% end
b = [1;1;1;1;1];
% 线性等式约束的系数矩阵和常数项向量 (每种泳姿有且仅有一人参加,一共四个约束)
Aeq = [1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0;
          0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0;
          0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0;
          0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1];
% Aeq = [eye(4),eye(4),eye(4),eye(4),eye(4)];  % 或者写成 repmat(eye(4),1,5)  
beq = [1;1;1;1];
lb = zeros(20,1);  % 约束变量的范围下限
ub = ones(20,1);  % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval] = intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
% reshape(x,4,5)' 矩阵变形
%      0     0     0     1    甲自由泳
%      1     0     0     0    乙蝶泳
%      0     1     0     0    丙仰泳
%      0     0     1     0    丁蛙泳
%      0     0     0     0    戊不参加

(3)例题三:钢管切割问题

在这里插入图片描述

%% 钢管切割问题
%% (1)枚举法找出同一个原材料上所有的切割方法
for i = 0: 2  % 2.9m长的圆钢的数量
    for j = 0: 3  % 2.1m长的圆钢的数量
        for k = 0:6   % 1m长的圆钢的数量
            if 2.9*i+2.1*j+1*k >= 6 && 2.9*i+2.1*j+1*k <= 6.9
                disp([i, j, k])
            end
        end
    end
end
% 老的MATLAB版本,会出现浮点数计算的误差
% 只需要将上面的if这一行进行适当的放缩即可。
% if 2.9*i+2.1*j+1*k >= 6-0.0000001 && 2.9*i+2.1*j+1*k <= 6.9+0.0000001

%% (2) 线性整数规划问题的求解
c = ones(7,1);  % 目标函数的系数矩阵
intcon=[1:7];  %  整数变量的位置(一共7个决策变量,均为整数变量)
A = -[1 2 0 0 0 0 1;  
         0 0 3 2 1 0 1;
         4 1 0 2 4 6 1];  % 线性不等式约束的系数矩阵
b = -[100 100 100]'; %  线性不等式约束的常数项向量
lb = zeros(7,1); % 约束变量的范围下限
[x,fval]=intlinprog(c,intcon,A,b,[],[],lb)

八、最大化最小化模型

(1)模型的一般形式

在这里插入图片描述

[x,feval] = fminimax(@Fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)

(2)典型例题

在这里插入图片描述

(3)模型的求解

[x,feval] = fminimax(@Fun,x0,A,b,Aeq,beq,lb,ub,@nonlfun,option)

在这里插入图片描述

  • 主函数
%% 最大最小化模型  :   min{max[f1,f2,···,fm]}
x0 = [6, 6];      % 给定初始值
lb = [3, 4];  % 决策变量的下界
ub = [8, 10];  % 决策变量的上界
[x,feval] = fminimax(@Fun,x0,[],[],[],[],lb,ub)
max(feval)
% x =
%     8.0000    8.5000
% feval =
%    13.5000    5.5000    5.5000   12.5000    8.5000    8.5000    5.5000   13.5000    9.5000    0.5000
% 结论:
% 在坐标为(8,8.5)处建立供应中心可以使该点到各需求点的最大距离最小,最小的最大距离为13.5单位。
  • 被调用的函数:Fun
function f = Fun(x)
    a=[1 4 3 5 9 12 6 20 17 8];
    b=[2 10 8 18 1 4 5 10 8 9];
    %  函数向量
    f=zeros(10,1);
    for i = 1:10
        f(i) = abs(x(1)-a(i))+abs(x(2)-b(i));  
    end
% f(1) = abs(x(1)-a(1))+abs(x(2)-b(1));  
% f(2) = abs(x(1)-a(2))+abs(x(2)-b(2));
% f(3) = abs(x(1)-a(3))+abs(x(2)-b(3));
% f(4) = abs(x(1)-a(4))+abs(x(2)-b(4));
% f(5) = abs(x(1)-a(5))+abs(x(2)-b(5));
% f(6) = abs(x(1)-a(6))+abs(x(2)-b(6));
% f(7) = abs(x(1)-a(7))+abs(x(2)-b(7));
% f(8) = abs(x(1)-a(8))+abs(x(2)-b(8));
% f(9) = abs(x(1)-a(9))+abs(x(2)-b(9));
% f(10) = abs(x(1)-a(10))+abs(x(2)-b(10));
end 

九、多目标规划模型

(1)求解思路

  1. 先统一量纲和讲目标函数统一为最大化和最小化;
  2. 通过加权求和把多目标规划转换为单目标规划
  3. 求解得到符号约束条件的最优解,可以再通过最优解还原多目标函数
    在这里插入图片描述

(2)典型例题

在这里插入图片描述
在这里插入图片描述


%%  多目标规划问题
w1 = 0.4;  w2 = 0.6;  % 两个目标函数的权重  x1 = 5  x2 = 2
w1 = 0.5;  w2 = 0.5;  % 两个目标函数的权重  x1 = 5  x2 = 2
w1 = 0.3;  w2 = 0.7;  % 两个目标函数的权重  x1 = 1  x2 = 6
c = [w1/30*2+w2/2*0.4 ;w1/30*5+w2/2*0.3];  % 线性规划目标函数的系数
A = [-1 -1];  b = -7; % 不等式约束
lb = [0 0]'; ub = [5 6]'; % 上下界
[x,fval] = linprog(c,A,b,[],[],lb,ub)
f1 = 2*x(1)+5*x(2)
f2 = 0.4*x(1) + 0.3*x(2)


%% 敏感性分析
clear;clc
W1 = 0.1:0.001:0.5;  W2 = 1- W1;  
n =length(W1);
F1 = zeros(n,1);  F2 = zeros(n,1);   X1 = zeros(n,1);  X2 = zeros(n,1);   FVAL = zeros(n,1);
A = [-1 -1];  b = -7; % 不等式约束
lb = [0 0]; ub = [5 6]; % 上下界
for i = 1:n
    w1 = W1(i);  w2 = W2(i);
    c = [w1/30*2+w2/2*0.4 ;w1/30*5+w2/2*0.3];  % 线性规划目标函数的系数
    [x,fval] = linprog(c,A,b,[],[],lb,ub);
    F1(i) = 2*x(1)+5*x(2);
    F2(i) = 0.4*x(1) + 0.3*x(2);
    X1(i) = x(1);
    X2(i) = x(2);
    FVAL(i) = fval;
end

% 「Matlab」“LaTex字符汇总”讲解:https://blog.csdn.net/Robot_Starscream/article/details/89386748
% 在图上可以加上数据游标,按住Alt加鼠标左键可以设置多个数据游标出来。
figure(1) 
plot(W1,F1,W1,F2)
xlabel('f_{1}的权重') 
ylabel('f_{1}和f_{2}的取值')
legend('f_{1}','f_{2}')

figure(2)
plot(W1,X1,W1,X2)
xlabel('f_{1}的权重') 
ylabel('x_{1}和x_{2}的取值')
legend('x_{1}','x_{2}')

figure(3)
plot(W1,FVAL)  % 看起来是两个直线组合起来的下半部分
xlabel('f_{1}的权重') 
ylabel('综合指标的值')



% % 注意:代码文件仅供参考,一定不要直接用于自己的数模论文中
% % 国赛对于论文的查重要求非常严格,代码雷同也算作抄袭

十、拓展例题

(1)护士值班问题

在这里插入图片描述
在这里插入图片描述

%% 护士排班问题
clear 
% (1) 系数向量
c = ones(6,1); 
% (2) 不等式约束
A =zeros(6,6);
A(1,1) = -1; A(1,6) = -1;
for i = 1:5
    A(i+1, i) = -1;  A(i+1,i+1) = -1;
end
b = -[60 70 60 50 20 30]';
%(3)上下界
lb = zeros(6,1);

% 注意,这题应该是一个整数规划问题哦
intcon = [1:6];
[x fval] = intlinprog(c,intcon, A, b, [], [], lb)  
% fval =
%    150
% 注:本题的x可能有多个解!

(2)货舱装运问题

在这里插入图片描述

在这里插入图片描述

%% 货机装货问题
clear
format long g   %可以将Matlab的计算结果显示为一般的长数字格式(默认会保留四位小数,或使用科学计数法)
% 输入已知数据
w = [10 16 8]'; % 前、中、后仓的重量限制
v = [6800 8700 5300]'; % 前、中、后仓的体积限制
a = [18 15 23 12]';  % 货物的重量
b = [480 650 580 390]';  % 货物单位重量占用的空间
c = [3100 3800 3500 2850]'; %  货物单位重量的利润
% (1) 系数向量
cc = [];  % 因为c这个符号被占用了,因此我们用cc表示系数向量
for i = 1:4
    for j = 1:3
        cc = [cc;c(i)];  % 用循环的方法生成cc
    end
end
cc = -cc;  % 因为要求最大值,所以这里对系数向量变号
% (2) 不等式约束
A = zeros(10,12); % 10个不等式约束
for i = 1:4
    A(i,3*i-2) = 1; A(i,3*i-1) = 1;  A(i,3*i) = 1;
end
for i = 5:7
     j = i-4;
    A(i,j) = 1; A(i,j+3) = 1;  A(i,j+6) = 1; A(i,j+9) = 1;
end
for i = 8:10
     j = i-7;
    A(i,j) = b(1); A(i,j+3) = b(2);  A(i,j+6) = b(3); A(i,j+9) = b(4);
end
b = [a;w;v];
% (3) 等式约束
Aeq = zeros(2,12);
for i = 1:4
    Aeq(1,3*i-2) = 1/10;
    Aeq(1,3*i-1) = -1/16;
end
for i = 1:4
    Aeq(2,3*i-2) = 1/10;
    Aeq(2,3*i) = -1/8;
end
beq = [0,0]';
%(4)上下界
lb = zeros(12,1);
% 进行求解
[x fval] = linprog(cc, A, b, Aeq, beq, lb)
fval = -fval
% fval =
%           121515.789473684
% 注:本题的x可能有多个解!

% 下面将x重新排列成4*3的矩阵
% 注意这里不能使用reshape函数,reshape函数是按照列的顺序进行转换的,也就是第一列读完,读第二列,即x1对应x_1,1,x2对应x_2,1
% 我们这题之前在定义x1-x12时,x1对应的是x_1,1, x2对应的是x_1,2 
% 我们可以这样操作:先变形后转置
x = reshape(x,3,4)'

% 如果不能理解上面的操作,可以看下面这个简单的例题
% y = [1,2,3,4,5,6];  % 想要把y里面的元素按照行的顺序来转换成大小为3*2的矩阵
% yy = reshape(y,2,3)  % 先按照列的顺序转换为2*3的矩阵
% yyy = yy'  % 对上一步操作得到的结果来进行转置

(3)非线性规划的求解

在这里插入图片描述

  • 主函数
%% 拓展三:非线性规划的求解
clear;clc
A=[-1 -2 0];   b=-1;  % 线性不等式约束
x0 = [1 0 1];  % 初始值
lb = [0 -inf -inf];  % 下界
[x,fval] = fmincon(@fun,x0,A,b,[],[],lb,[],@nonlfun)
fval = -fval

% 先使用蒙特卡罗算法确定初始值,然后再进行计算
N = 1000000;
x1 = unifrnd(0,3,N,1);   % x1在0~3之间均匀分布
x2 = unifrnd(-8,7,N,1);  % x2在-8~7之间均匀分布
x3 = 2-x1.^2;   % x1^2 + x3 = 2, 注意这里要用“.^”,表示每个元素分别平方
fmax=-inf; % 初始化函数f的最大值为负无穷(后续只要找到一个比它大的我们就对其更新)
for i=1:N
    x = [x1(i), x2(i), x3(i)];  %构造x向量, 这里千万别写成了:x =[x1, x2, x3]
    if (x(1)+2*x(1)^2+x(2)+2*x(2)^2+x(3)-10<=0) & (x(1)+x(1)^2+x(2)+x(2)^2-x(3)-50<=0) & (2*x(1)+x(1)^2+2*x(2)+x(3)-40<=0) & (x(1)+2*x(2)>=1)   % 判断是否满足条件
        result =2*x(1)+3*x(1)^2+3*x(2)+x(2)^2+x(3) ;  % 如果满足条件就计算函数值
        if  result  > fmax  % 如果这个函数值大于我们之前计算出来的最大值
            fmax = result;  % 那么就更新这个函数值为新的最大值
            x0 = x;  % 并且将此时的x1 x2 x3更新为初始值
        end
    end
end
disp('蒙特卡罗算法选取的初始值为:'); disp(x0)
[x,fval] = fmincon(@fun,x0,A,b,[],[],lb,[],@nonlfun)
fval = -fval
  • 被调用函数:fun (目标函数)
function f=fun(x)
    f=2*x(1)+3*x(1)^2+3*x(2)+x(2)^2+x(3);
    f=-f;  % 最大值加负号改为最小值
end
  • 被调用函数:nonlfun (非线性约束条件)
function [c,ceq]=nonlfun(x)
    % 非线性不等式约束    
    c=[x(1)+2*x(1)^2+x(2)+2*x(2)^2+x(3)-10
        x(1)+x(1)^2+x(2)+x(2)^2-x(3)-50
        2*x(1)+x(1)^2+2*x(2)+x(3)-40];
    % 非线性等式约束    
    ceq=x(1)^2+x(3)-2;  
end

(4)覆盖问题

在这里插入图片描述

%%  第四题:覆盖问题
c = ones(1,6);  % 目标函数的系数矩阵
intcon=[1:6];  % 整数变量的位置(一共6个决策变量,均为0-1整数变量)
% 线性不等式约束的系数矩阵和常数项向量
A =- [1 1 1 0 0 0;
         0 1 0 1 0 0;
         0 0 1 0 1 0;
         0 0 0 1 0 1;
         0 0 0 0 1 1;
         1 0 0 0 0 0;
         0 1 0 1 0 1];
b = -ones(7,1);
Aeq = []; beq = [];  % 不存在线性等式约束
lb = zeros(1,6);  % 约束变量的范围下限
ub = ones(1,6);  % 约束变量的范围上限
%最后调用intlinprog()函数
[x,fval]=intlinprog(c,intcon,A,b,Aeq,beq,lb,ub)
  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苗半里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值