An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

该博客介绍了Temporal Convolutional Networks (TCN)在序列建模中的应用,强调其输入输出长度相等及未来信息不泄露到过去的原则。文章详细探讨了膨胀卷积(Dilated Convolutions)如何有效地扩展了模型的接收域,并提到了残差连接(Residual Connections)在TCN中的作用。TCN通过大过滤器尺寸和膨胀系数来增强序列捕捉能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling

2018


文章地址https://arxiv.org/pdf/1803.01271.pdf
代码地址https://github.com/LOCUSLAB/tcn
https://blog.csdn.net/qq_33331451/article/details/104810419


Temporal Convolutional Networks(TCN)

  1. Sequence Modeling
    f : X T + 1 → Y T + 1 f:{\mathcal X}^{T+1}\rightarrow {\mathcal Y}^{T+1} f:XT+1YT+1
  2. Causal Convolutions
    tcn基于两个原则:输入与输出长度相同;未来没有可能泄露到过去。
  3. Dilated Convolutions
    1-D序列输入 x ∈ R n {\bf x}\in{\Bbb R}^n xRn,一个过滤器 f : { 0 , . . . , k − 1 } → R f:\{0,...,k-1\}\rightarrow {\Bbb R} f:{0,...,k1}R,膨胀卷积操作F F ( s ) = ( x ∗ d f ) ( s ) = ∑ i = 0 k − 1 f ( i ) ⋅ x s − d ⋅ i F(s)=({\bf x}*_df)(s)=\sum_{i=0}^{k-1}f(i)·{\bf x}_{s-d·i} F(s)=(xdf)(s)=i=0k1f(i)xsdi,其中d是膨胀系数,k是过滤器大小,s-d·i是过去的方向。d=1时是普通卷积,使用较大的膨胀能够使顶级输出表示更广泛的输入从而有效扩展了convnet的接收域。两种方法增加TCN接收域:选择较大的过滤器尺寸k,增加膨胀系数d。
    在这里插入图片描述
  4. Residual Connections
    o = A c t i v a t i o n ( x + F ( x ) ) ) o={\rm Activation}({\bf x}+{{\mathcal F(\bf x)})}) o=Activation(x+F(x)))
<think>好的,用户想找TCN(时间卷积网络)的原始论文。首先,我需要确认TCN的原始论文是哪一篇。根据用户提供的引用内容,引用[2]提到TCN是由作者在某个时间提出的,用于序列建模,并比较了CNN与RNN、LSTM等的效果。但引用中没有直接给出论文标题或作者。 接下来,我需要回想一下TCN的相关信息。TCN通常与《An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling》这篇论文相关联,作者是Shaojie Bai、J. Zico Kolter和Vladlen Koltun,发表于2018年。这可能就是用户要找的原始论文。此外,用户提到的引用[3]提到论文获得了ACL 2018的最佳短文奖,但ACL通常处理自然语言处理,而TCN的论文可能发表于其他会议,比如ICML或arXiv预印本,需要确认。 可能用户混淆了不同的会议,或者引用[3]指的是另一篇相关论文。因此,需要指出可能的原始论文,并建议用户核对作者和会议信息。同时,提供arXiv链接方便用户访问,因为很多论文会先发布在那里。此外,生成相关问题帮助用户进一步了解TCN的结构和应用,如比较TCN与RNN、TCN的核心组件等。</think>TCN(Temporal Convolutional Network)的原始论文通常被认为是2018年由Shaojie Bai等人发表的《An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling》。这篇论文系统地提出了TCN的网络架构,并通过实验验证了其在序列建模任务中优于传统RNN、LSTM等模型的性能[^2]。 论文核心内容包括: 1. **因果卷积**(Causal Convolution)保证时序依赖关系不泄漏 2. **膨胀卷积**(Dilated Convolution)扩大感受野 $$ y_t = \sum_{k=0}^{K-1} w_k \cdot x_{t-d \cdot k} $$ 其中$d$为膨胀系数,$K$为卷积核大小 3. **残差连接**(Residual Connection)解决深层网络梯度消失问题[^2] 该论文最初发布于arXiv预印本平台: https://arxiv.org/abs/1803.01271
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值