目标
01 了解数值计算中的样条插值
02 了解多元样条的基本理论框及创新思想
03 多元样条与力学
04 MATLAB中的样条工具箱及应用
05 了解有限元法
06 B样条及应用
插值
什么叫插值?
插值是数学领域数值分析中的通过已知的离散数据求未知数据的过程或方法。
线性插值
牛顿插值
拉格朗日插值公式
分段插值
Hermite插值
双线性二次插值
三次样条插值
用一维数据举例预备知识:
已知离散的数据,但不知函数表达式,插值和拟合都是为了寻找函数表达式。区别在于,插值得到的函数能够穿过已知的点(在已知的点的函数表达式的值等于已知数值,但容易出现龙格现象),拟合只求函数图形神似而不求穿过已知点。
那么怎么能既穿过已知点又能让函数图形像呢?就是怎么避免龙格现象呢?
答案是分段插值,就是将全部数据分割成若干部分,每个小部分用插值得到不同的函数,最后用很多不同的函数表达原来的序列。
问题又来了,不同函数两端衔接不好怎么办?答案是高次样条差值,既每个分段函数都采用高次函数形式来构造(三次样条差值 就是用x的三次方形式构造)这就保证了得到的多个函数关系式在先接触具有n-1次的连续可导性质(翻译成人话就是衔接保证光滑)
一句话总结:三次样条插值就是将原始长序列分割成若干段构造多个三次函数(每段一个),使得分段的衔接处具有二阶导数连续的性质(也就是光滑衔接)。
其中“三次”只函数基本形式使用三次函数的形式。“样条”是一种手艺,指加工曲面时使得曲面光滑的手艺。“插值”你肯定知道是啥意思了~~
转自:链接:https://www.zhihu.com/question/31269601/answer/244310086
样条函数
在数值分析中,样条是一种特殊的函数,由多项式分段定义。
在插值问题中,样条插值通常比多项式插值好用。用低阶的样条插值能产生和高阶的多项式插值类似的效果,并且可以避免被称为龙格现象的数值不稳定的出现。并且低阶的样条插值还具有“保凸”的重要性质。
在计算机科学的计算机辅助设计和计算机图形学中,样条通常是指分段定义的多项式参数曲线。由于样条构造简单,使用方便,拟合准确,并能近似曲线拟合和交互式曲线设计中复杂的形状,样条是这些领域中曲线的常用表示方法。
回归样条
你也许听说过加权最小二乘估计(weighted least-squares)、核估计(kernel smoother)、局部多项式估计(local polynomial fitting),但谈到对模型中未知函数的估计,样条估计依然占据着重要的位置。
附上一个超级好的链接:
https://esl.hohoweiya.xyz/05-Basis-Expansions-and-Regularization/5.2-Piecewise-Polynomials-and-Splines/index.html
B样条
https://blog.csdn.net/so_geili/article/details/51172471
计算机图形学--------充分理解B样条曲线
参考文献
https://www.cnblogs.com/ECJTUACM-873284962/p/6833391.html
这里放这里的链接,一个原因,找资料时,网页的排版特别好,记录下来
https://www.zhihu.com/question/22320408/answer/141973314
牛顿插值的几何解释是怎么样的?
https://www.zhihu.com/question/31269601/answer/244310086
三次样条插值方法
https://blog.csdn.net/so_geili/article/details/51172471
计算机图形学--------充分理解B样条曲线
https://blog.csdn.net/Da_wan/article/details/82223572
拉格朗日插值、分段线性插值、三次样条插值
https://blog.csdn.net/eric_e/article/details/79499617
数值分析(拟合、插值和逼近)之数据插值方法(线性插值、二次插值、Cubic插值、埃米尔特、拉格朗日多项式插值、牛顿插值、样条插值)(含opengl程序)