1065 最小正子段和
基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
N个整数组成的序列a[1],a[2],a[3],…,a[n],从中选出一个子序列(a[i],a[i+1],…a[j]),使这个子序列的和>0,并且这个和是所有和>0的子序列中最小的。
例如:4,-1,5,-2,-1,2,6,-2。-1,5,-2,-1,序列和为1,是最小的。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数
Output
输出最小正子段和。
Input示例
8
4
-1
5
-2
-1
2
6
-2
Output示例
1
问题其实就是找出 min(sum[j]-sum[i]) {1 < i < j < n+1}
然后很自然的想到2分 平衡树 于是STL水过
set中sum[j]的迭代器-1要找的sum[i]
#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>
//#define CHECK_TIME
ll sum[50001];
set<ll>exist;
int main()
{
//freopen("/home/lu/文档/r.txt","r",stdin);
//freopen("/home/lu/文档/w.txt","w",stdout);
int n;
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%lld",sum+i);
ll res=INF;
exist.insert(0);
for(int i=1;i<=n;++i){
sum[i]+=sum[i-1];
exist.insert(sum[i]);
set<ll>::iterator it=exist.find(sum[i]);
if(it!=exist.cbegin()){
ll t=sum[i]-*(--it);
if(t>0)
res=min(t,res);
}
}
printf("%lld\n",res);
return 0;
}