思路:
前缀和:从1->n记录和,并且记录当前位置(前缀),从小到大排序,假设为A,B, C,D
A<B<C<D(或等于)
i1 i2 i3 i4 前缀
如果i2>i1那么必定是可以形成一个可能的最小子段, B-A , 如果i2<i1 那么这一段必定不可取。
A==B那么无论i2 与i1的关系如何都不会改变,因为题目要求如果有正数则为正数,否则才为0
看了看别人的博客据说如果A到B不能形成队列,A到C形成队列了,那么B到C一定是比A到C的数值更小,而且还一定能够形成队列(A与B不能形成队列,说明posA>posB,A与C能形成队列,说明posA<posC,那就一定有posB<posC)。遇到这类题一定要第一时间想到前缀和,要么就是树状数组,往O(n)的方向去想。
自己做的题不多,积累后再返回来看
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
struct node
{
long long val;
int id;
}data[50005];
bool cmp(node x, node y)
{
return x.val<y.val;
}
int main()
{
int n;
while(cin>>n)
{
data[0].val=0;
data[0].id=0;
for(int i=1;i<=n;i++)
{
cin>>data[i].val;
data[i].val+=data[i-1].val;
data[i].id=i;
}
sort(data,data+n+1,cmp);
bool first=true;//这里为了确保遇到第一个正数,记录下来
long long ans=0;
for(int i=1;i<=n;i++)
{
if(data[i].id>data[i-1].id&&data[i].val>data[i-1].val)
{
if(first)
{
ans=data[i].val-data[i-1].val;
first=false;
}
else
ans=min(ans,(data[i].val-data[i-1].val));
}
}
cout<<ans<<endl;
}
return 0;
}