Python&Pytorch基础教程——numpy与Tensor

本文介绍了NumPy中的核心对象——ndarray,并详细解释了ndarray的各种属性,包括ndim、shape、size、dtype和itemsize等。同时展示了如何利用NumPy创建不同类型的数组,如全1矩阵、全0矩阵及空矩阵。
摘要由CSDN通过智能技术生成

一、Numpy的介绍: 

1、ndarray:

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

(1)实际的数据 

(2)描述这些数据的元数据 ,大部分操作仅针对于元数据,而不改变底层实际的数据。

NumPy数组的下标从0开始。 
同一个NumPy数组中所有元素的类型必须是相同的。

在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

NumPy的数组中比较重要ndarray对象属性有:

ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。

ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。

ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。

ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。

ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。

ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

2、创建ndarray数组:

ndarray属性:ndim属性,表示维度个数;shape属性,表示各维度大小;dtype属性,表示数据类型。

创建ndarray数组函数有:


创建numpy数组代码演示:

import numpy as np #引入numpy库
#以list形式创建:
#创建一维的narray对象
a = np.array([1,2,3,4,5])

#创建二维的narray对象
a2 = np.array([[1,2,3,4,5],[6,7,8,9,10]])
a_ones = np.ones((3,4)) # 创建3*4的全1矩阵
print(a_ones)
# 结果
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]

a_zeros = np.zeros((3,4)) # 创建3*4的全0矩阵
print(a_zeros)
# 结果
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]

a_eye = np.eye(3) # 创建3阶单位矩阵
print(a_eye)
# 结果
[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

a_empty = np.empty((3,4)) # 创建3*4的空矩阵 
print(a_empty)
# 结果
[[  1.78006111e-306  -3.13259416e-294   4.71524461e-309   1.94927842e+289]
 [  2.10230387e-309   5.42870216e+294   6.73606381e-310   3.82265219e-297]
 [  6.24242356e-309   1.07034394e-296   2.12687797e+183   6.88703165e-315]]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值