利用autodl服务器跑模型

本文详细介绍了如何在阿里云上租用服务器、上传模型并运行,包括使用JupyterLab解压、训练模型的步骤。还提及了解决常见错误如ImageNotFound和protobuf版本不匹配的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 租用服务器

  • 本地改模型

  • 服务器

    • 将改进好的、数据集处理好的模型压缩为zip文件
    • 上传到阿里云盘
    • 打开服务器AUTODL服务器,在主页中选择容器实例在这里插入图片描述
  • 在此位置进行开关机操作,若停止服务器,必须关机,不然会一直扣钱在这里插入图片描述

2. 运行模型

  • 选择AutoPanel在这里插入图片描述

  • 然后选择公共网盘,之后选择授权阿里云盘在这里插入图片描述

  • 选择上传好的文件,点击下载在这里插入图片描述

  • 然后选择进入JupyterLab在这里插入图片描述

  • 选择终端在这里插入图片描述

  • 在命令行中使用unzip指令对下载好的压缩文件进行解压(unzip yolov5在这里插入图片描述

  • 根据解压位置,选择根目录路径,使用cd进入想要的目录层

    • cd autodl-tmp
    • cd yolov5(文件名)
  • 最后执行代码训练指令(博主自用,可以根据自己文件实际需要对应修改)

    • python train.py --data data/zhouzhou128.yaml --cfg models/yolov5s.yaml --weights weights/yolov5s.pt --batch-size 32 --epochs 100
    • python train.py --data data/fish.yaml --cfg models/yolov5l-Cneb.yaml --weights weights/yolov5l.pt --batch-size 16 --epochs 150
    • 注意这个命令是直接指定的参数,如果想用train里填好的参数,可以直接运行。输入:python train.py
    • 此外,注意此命令的路径,如果本地当初各个文件不是放在models或weights等文件夹里的,要重新复制一个过去哦
  • 补充

    • 如果遇到/…/…/…/1.jpg类似错误(AssertionError: Image Not Found),删除数据集中labels目录下的cache文件
    • 运行模型命令:python 文件名称
    • 不能删除文件夹,但可以剪切到别的地方去
    • 如果运行train.PY出现这种错误 说明镜像环境中的protobuf版本不对 可以输入指令 pip install protobuf==3.11.2 重新安装 即可(原先的protobuf 或者其他安装包的版本可以通过输入pip list来查看 ) 出现这个报错的时候系统环境中的protobuf版本为4.23.2在这里插入图片描述
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值