深度学习一:深度前馈网络

本文介绍了深度前馈网络的基本概念,探讨了线性分类问题的局限性,尤其是无法解决XOR逻辑问题。通过引入非线性特征和激活函数,特别是Sigmoid、Tanh、ReLU、ELU和Leaky ReLU,解决了非线性问题。激活函数增加了神经网络的非线性,使得模型能够处理更复杂的任务。反向传播作为梯度下降法在深度网络中的应用,用于调整权重以最小化损失函数,如均方误差和交叉熵损失函数。交叉熵损失函数在分类问题中表现优越,避免了梯度消失的问题。
摘要由CSDN通过智能技术生成

简述#

深度前馈网络(deep feedforward network), 又叫前馈神经网络(feedforward neural network)和多层感知机(multilayer perceptron, MLP) .
深度前馈网络之所以被称为网络(network),因为它们通常由许多不同的符合函数组合在一起来表示。
由输入层(input layer)、隐藏层(hidden layer)、输出层(output layer)构成。
隐藏层的维数决定了模型的宽度(width)。

如图,这是一个经典的二层神经网络模型(Two-Layer Neural Network)。通常输入层和输出层神经元的个数是固定的,我们需要选择和调整隐藏层的层数和每一层神经元的个数等。

注:我们可以利用矩阵乘法来迅速计算神经网络的输出,后面不会提及。可以参考Python神经网络编程(拉希德著)这本书,写的非常简洁。
线性分类问题#

所有数据样本是线性可分的,即满足一个形如 w0+w1x1+w2x2

的线性方程的划分
线性分类问题的局限#

我们引入经典的逻辑运算来推理线性分类问题的局限。

如图所示,分别为线性模型来表示 AND,OR 逻辑,那么XOR要怎么表示呢?

由图可知:我们可以利用线性模型拟合出一个直线来表示 AND、OR、NOR 的逻辑运算,但是没有办法用一条直线表示 xor 异或逻辑,这就是一个经典的非线性问题!

注:黑色点是positive(1)的点,白色点是negative(0)的点

从逻辑运算的视角来看:
逻辑 1 1 0 1 1 0 0 0
AND 1 AND 1 = 1 0 AND 1 = 0 1 AND 0 = 0 0 AND 0 =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值