Algebraic Systems

Default

1, S S S represents a non-empty set.

Group

Semi-group

Definition:

< S , ⋆ > <S,\star> <S,> is a semi-group, if a ⋆ b ⋆ c = a ⋆ ( b ⋆ c ) a\star b\star c=a\star(b\star c) abc=a(bc).

Definition Of Group:

A semi-group < S , ⋆ > <S,\star> <S,> is a group, if following conditions are satisfied:

1, ∀ a ∈ F , ∃ e ∈ F ,   s . t .   e ⋆ a = a ⋆ e = a \forall a\in F,\exist e\in F,\ s.t.\ e\star a=a\star e=a aF,eF, s.t. ea=ae=a.

In other words, there exists an identity element in S S S.

2, ∀ a ∈ F , ∃ b ∈ F ,   s . t .   a ⋆ b = b ⋆ a = e \forall a\in F,\exist b\in F,\ s.t.\ a\star b=b\star a=e aF,bF, s.t. ab=ba=e.

In other words, there exists inverse elements of any elements in S S S.

What’s more, a group is a commutative group, also Abelian group, if a ⋆ b = b ⋆ a a\star b=b\star a ab=ba.


Examples:

1, Invertible matrices make up a group of addition and multiplication.

2, Unit roots of n n n-degree make up a commutative group of multiplication.

Ring

Definition:

< S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is a ring, if following conditions are satisfied:

1, < S , ⋆ 1 > <S,\star_1> <S,1> is a commutative group.

2, < S , ⋆ 2 > <S,\star_2> <S,2> is a semi-group.

3, a ⋆ 2 ( b ⋆ 1 c ) = ( a ⋆ 2 b ) ⋆ 1 ( a ⋆ 2 c ) ,   ( b ⋆ 1 c ) ⋆ 2 a = ( b ⋆ 2 a ) ⋆ 1 ( c ⋆ 2 a ) a\star_2(b\star_1c)=(a\star_2b)\star_1(a\star_2c),\ (b\star_1c)\star_2a=(b\star_2a)\star_1(c\star_2a) a2(b1c)=(a2b)1(a2c), (b1c)2a=(b2a)1(c2a).

Additionally, if a ⋆ 2 b = b ⋆ 2 a a\star_2b=b\star_2a a2b=b2a, then < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is called a commutative ring.


If ∃ b ≠ 0 ,   s . t .   a b = 0 ( b a = 0 ) \exist b\neq0,\ s.t.\ ab=0(ba=0) b=0, s.t. ab=0(ba=0), then a a a is called a left(right) zero divisor.

Only 0 0 0 is both left and right zero divisor, called trivial zero divisor.

Others are non-trivial zero divisors.

If a ring has no non-trivial zero divisor, then it’s a ring without zero divisor.

Unitary Ring

Definition:

A ring < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is a unitary ring, if it has identity element of ⋆ 2 \star_2 2.

Domain

A unitary, commutative ring is an (integral) domain, if it has no non-trivial zero divisor.

Ideal

Definition:

A ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>.

A sub-ring A A A of < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2> is a left(right) ideal of R R R, if ∀ x ∈ A , ∀ r ∈ R ,   s . t .   r x ∈ A ( x r ∈ A ) \forall x\in A,\forall r\in R,\ s.t.\ rx\in A(xr\in A) xA,rR, s.t. rxA(xrA), set down as A ⊲ R A\lhd R AR.

Then you can intuit what is two-sided ideal.

It is a proper ideal, if x ↦ r x ( x r ) x\mapsto rx(xr) xrx(xr) is not a surjection.

Principal Ideal

∀ a ∈ R , Σ = { I ⊲ R ∣ a ∈ R } . \forall a\in R,\Sigma=\{I\lhd R|a\in R\}. aR,Σ={IRaR}.

Set down ∩ I ∈ Σ I \mathop\cap\limits_{I\in\Sigma}I IΣI as < a > <a> <a>; that is the principal ideal of R R R generated by a a a.

Sub-ring

Definition:

If non-empty S 1 ∈ S S_1\in S S1S is a ring considering the addition and mutiplication in S S S, then it is called a sub-ring of S S S.

There is a equivalent statement: A sub-ring is a sub-set which is closed with subtraction and mutiplication of S S S. For subtraction can ensure the existence of zero element and inverse elements.

Unit Group

Definition:

A unitary ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>.

< { x ∣ x ∈ R , x  is invertible } , ⋆ 2 > <\{x|x\in R,x\text{ is invertible}\},\star_2> <{xxR,x is invertible},2> is a group, called the unit group of < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2>, set down as U ( R ) U(R) U(R).

Elements in U ( R ) U(R) U(R) are called units.


Examples:

U ( M n ( F ) ) = G L n ( F ) = { invertible matrices } . U(M_n(F))=GL_n(F)=\{\text{invertible matrices}\}. U(Mn(F))=GLn(F)={invertible matrices}.

Division Ring

Definition:

A unitary ring < R , ⋆ 1 , ⋆ 2 > <R,\star_1,\star_2> <R,1,2> is a division ring, if R / { the identity element of  ⋆ 1 } = U ( R ) R/\{\text{the identity element of }\star_1\}=U(R) R/{the identity element of 1}=U(R).

If you don’t exclude the identity element of ⋆ 1 \star_1 1, you will end up having contradiction.

Field

Definition:

A commutative division ring < S , ⋆ 1 , ⋆ 2 > <S,\star_1,\star_2> <S,1,2> is called a field.


A field F F F.

Mappings from S S S to F F F are called F F F-value functions at S S S.

They form a linear space, set down as F S F^S FS.

Algebra

Definition:

< S , + , × > <S,+,\times> <S,+,×> is a unitary ring and < S , + , ⋅ > <S,+,\cdot> <S,+,>, where dot means scalar product on field F F F, is a linear space.

Then < S , + , × , ⋅ > <S,+,\times,\cdot> <S,+,×,> is an algebra on F F F.

The dimension of this linear space is defined as the dimension of the algebra.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值