直觉有时也是可靠的。

  中午和同学吃饭时,被问到了一个这样的问题:

    两个圆,大圆半径是小圆3倍,设小圆在大圆外圈绕大圆转一圈所旋转的角度为M;小圆在大圆外圈绕大圆转一圈所旋转的角度为N,求M/N。(如图1)

  图1:

 

  我当时的直觉是M大于N, 但是当我仔细分析求解时,我认为:在两种情况下,小圆走的路程都等于大圆的周长,所以M=N,但这和直觉不合。问题出在哪呢?同学认为两种情况下,小圆走的路程不一样。但我马上就反驳:过桥时,行驶在拱桥上的汽车所走的路程不就是等于拱桥的桥长吗?但我立刻发现这个例子有问题,因为拱桥的半径远大于汽车轮胎的半径,而题目中说明R(大) = 3R(小)。

  考虑小圆在外圈转一圈时,走了多少路程?想一想,我们以前是如何来计算路程的,如图2:

  在水平线段上,圆走的路程实际上就是线段的长度。等等,圆走的路程这是一个什么样概念?指的是圆所转动的的角度乘以半径吗?对!但是,圆走的路程是以什么为基准来衡量的呢?是相切的那个点吗?不是,因为相切的那个点在不断的变化。也许你已经想到了,对!是圆心。圆心所走的路程也就是圆所走的路程。

  所以,在外圈所走的路程是 2*Pi*(3+1),在内圈是 2*Pi*(3-1)

  M/N = 2。

 

 

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值