模型评估方法
目录
1. 留出法
“留出法”将数据集划分为两个互斥的数据集“训练集”(记为S,用于训练模型)和“测试集”(记为T,用于调参和测试模型误差)。注意:训练集和测试集在划分时要尽量保持数据分布的一致性,要保持样本类别比例相似(分层采样),如将数据集划分为0.7的训练集,0.3的测试集,那么每个类别都按照7:3的比例划分进训练集和测试集;另外,在划分数据集时需要随机划分多次,重复进行试验评估后取平均值作为留出法的评估结果。一般讲0.6~0.75的数据作为训练集,剩下的数据集作为测试集。
2.K折交叉验证法
将数据集划分为k个容量相似的数据集,每个数据集中的各类别应均匀分布,将其中k-1个数据集作为训练集,1个数据集作为测试集,共有组训练集\测试集。其中k常取10,5,20,常用的划分方法是“10次10折交叉验证法”,返回10次10折交叉数据的平均结果。该方法适用于样本足够(不是非常多)的数据集。
3. 自助法
对数据集进行m次随机采样(可多次选取一个样本)获得一个训练集,剩下的未被采样过的样本作为测试集(约占1/3)。该方法适用于样本少、难以划分训练集\测试集的数据集。