自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 IDEA中web项目创建及部署

8.点击”部署“,这里点击加号,选择“工件”,弹出对应文件名的工件,默认工件名与项目名称相对应,如需修改,需注意工件路径名应与“URL”栏的路径对应一致。PS:若需调整至英文版界面,可点击右上角组件,点击设置-外观与行为-系统设置-语言和地区,进行语言修改,选择你想要使用的语言,应用即可。1.文件-新建-项目-设置项目名称,这里我设置的项目名为pro1.点击创建,选择创建的窗口,即可得到新界面。4.点击添加框架支持,勾选web应用程序,如图所示,点击确定,回到左侧项目栏,出现web文件夹。

2024-09-22 21:37:12 236

原创 机器学习之主成分分析

主成分分析(Principal Component Analysis, 简称PCA)是一种常见的统计方法,用于数据降维和特征提取。它通过线性变换将原始数据投影到一个由各主成分组成的新坐标系中,这些主成分是原始数据中方差最大的方向。这样做可以减少数据的维度,去除数据中的噪声和冗余信息,帮助发现数据中的模式和结构。主成分分析的目标是找到一组正交的新变量(主成分),使得数据在这些新变量上的方差最大。通过对数据的协方差矩阵进行特征值分解,可以得到主成分的方向和相对重要性,并根据这些主成分对数据进行投影和降维。

2024-06-16 10:52:34 1183

原创 机器学习之支持向量机

支持向量机(Support Vector Machine,SVM)是一种监督学习算法,用于进行分类和回归分析。其基本原理是找到一条能够将不同类别的数据分隔开的最优超平面。支持向量机能够处理线性可分的数据集,也可以通过使用核函数将数据映射到更高维的空间来处理非线性数据。支持向量机在很多领域都有广泛的应用,如文本分类、图像识别、生物信息学等。(1)超平面在SVM中,数据被看作是在高维空间中的点,而分类的目标是找到一个能够将不同类别的点分隔开的超平面。

2024-06-10 10:47:41 938

原创 机器学习之Logistic回归

Logistic回归是一种常用的分类模型,主要用于处理二分类问题,它通过将线性回归的结果通过sigmoid函数进行转换,将特征的线性组合映射到[0,1]的区间,从而得到样本属于某个类别的概率预测值。在Logistic回归中,我们可以采用极大似然估计的方法来估计模型参数,即最大化给定数据集下的似然函数,求得最优参数使得观测到的数据出现的概率最大。我们可以通过梯度上升法来求解最大似然估计的参数,通过不断迭代更新参数,使得损失函数逐渐收敛到最小值。

2024-05-27 22:50:02 752

原创 机器学习之朴素贝叶斯算法

贝叶斯决策论是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。朴素贝叶斯算法是一种常用的分类算法,它基于贝叶斯定理和特征条件独立假设,通过计算先验概率和条件概率来进行分类。通过实验,我们可以对朴素贝叶斯算法的性能进行全面的评估和总结,从而更好地理解和应用这一经典的分类算法。在实际应用中,朴素贝叶斯算法具有简单、高效、易于实现等优点,适用于大规模数据集和高维特征空间。

2024-05-13 23:08:07 1054

原创 机器学习之决策树

决策树是一种常用的机器学习算法,它通过树状结构来表示不同的决策路径,并根据特征属性来进行分类或预测。在实验中,我们可以利用决策树算法来解决分类和回归问题,通过构建决策树模型来对数据进行分析和预测。我们可以通过信息增益、增益率和基尼指数等来对数据进行处理分析,从而获得合适的效果。

2024-04-29 22:37:45 693

原创 机器学习之模型评估

模型评估在机器学习中至关重要。模型评估可以帮助我们了解模型的性能如何,指导我们对模型进行改进和优化。通过模型评估,我们可以确定模型的准确性、泛化能力和稳定性,以及是否存在过拟合或欠拟合等问题,常用的评估指标包括准确率、精确率、召回率等。另外,对于不同类型的问题,还可以采用不同的评估方法,如P-R曲线、ROC曲线、混淆矩阵等。综上所述,模型评估在机器学习中是至关重要的,可以帮助我们提高模型的性能和效果。FN%7D。

2024-04-15 11:20:57 1946 1

原创 k-近邻算法(kNN)-python实现

k-近邻算法是分类数据最简单最有效的算法,它是基于实例的学习,使用算法时我们必须有接近实际数据的训练样本数据。k-近邻算法必须保存全部数据集,如果训练的数据集很大,必须使用大量的存储空间。k-近邻算法的优点包括简单易理解、无需训练过程等,缺点包括计算复杂度高、对异常值敏感等。在实际应用中,我们需要根据具体问题选择合适的k值和距离度量方法,以获得更好的分类或回归效果。

2024-03-31 13:00:02 1039

原创 机器学习--安装anaconda及环境配置

输入activate,进入base环境,输入python,由于之前已安装配置好python环境,所以这里可以直接查看已安装好的python环境,anaconda全部安装完毕。3.3 双击进入,点击新建,输入以下路径,可根据自己下载的anaconda安装路径调整,D:\anaconda是我自己的安装路径,后面内容配置时都一样。在学习机器学习过程中,我们需要安装anaconda来进行使用,以下是安装anaconda的具体内容。则会显示anaconda安装详细内容及地址,则安装成功。2.1 双击下载好的安装包。

2024-03-10 09:20:13 690 1

数字图像处理实验报告.zip

实验一:图像的基本操作;实验二:计算图像的基本统计指标;实验三:γ曲线增强与对数函数增强;实验四:直方图均衡化;实验五:直方图规定化。实验一:图像的基本操作实验目的1.熟悉并掌握MATLAB工具的使用;2.实现图像的读取、存储、查询、显示等基本操作;3.掌握和理解图像直方图的原理;4. 编程实现图像直方图的绘制。二、实验内容1. 实现图像的基本操作;2. 编程统计图像的直方图,并绘制;3. 编程设计图像的归一化直方图,并绘制;4. 利用图像处理工具包,编程验证。三、实验工作环境MATLAB R2021b四、实验代码和运行结果1.图像的读取和显示代码I=imread('C:\Users\asus\Desktop\cat.jpg'); imshow(I);这段代码读取并显示一张名为’cat.jpg’的图片。使用imread函数来读取指定路径下的图片文件,读取后的图片会被存储在变量’I’中,使用imshow函数来显示之前读取的图片,会在一个新窗口显示该图片。运行结果:如图图1即为显示的图片2.图像的重命名和保存代码:I=imread('C:\Users\asus\Desktop\cat.jp

2024-09-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除