深度学习
文章平均质量分 92
落痕的寒假
这个作者很懒,什么都没留下…
展开
-
[深度学习] 时间序列分析工具TSLiB库使用指北
任务类型定义特点应用场景示例长时预测预测时间序列在未来较长时间段内的变化趋势需要考虑长期趋势和季节性因素,使用复杂的模型来捕捉长期依赖性股票价格预测、长期能源需求预测等短时预测预测时间序列在近期的未来值通常关注短期波动,模型需要快速响应新数据短期销售预测、交通流量预测等缺失值填补填补时间序列中缺失的数据点需要保持时间序列的连续性和一致性时间序列预处理、历史数据补全等异常检测识别时间序列中的异常或离群点需要区分正常波动和异常事件网络安全监控、设备故障检测等分类。原创 2024-08-28 22:10:59 · 1449 阅读 · 0 评论 -
[深度学习] 计算机视觉低代码工具Supervision库使用指北
Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果。。Supervision库需要在Python3.8及以上版本的环境下运行。原创 2024-03-18 09:31:13 · 4915 阅读 · 2 评论 -
[自然语言处理] 自然语言处理库spaCy使用指北
自然语言处理(Natural Language Processing,简称NLP)是一门研究人类语言与计算机之间交互的领域,旨在使计算机能够理解、解析、生成和处理人类语言。NLP结合了计算机科学、人工智能和语言学的知识,通过各种算法和技术来处理和分析文本数据。近年来,随着深度学习技术的发展,神经网络模型在自然语言处理(NLP)领域取得了重大的突破。其中,循环神经网络(RNN)、长短时记忆网络(LSTM)和Transformer等模型都发挥了关键作用。原创 2023-07-27 17:45:57 · 9049 阅读 · 0 评论 -
[深度学习] 基于切片辅助超推理库SAHI优化小目标识别
AutoDetectionModel类SAHI基于AutoDetectionModel类的from_pretrained函数加载深度学习模型。目前支持YOLOv5 models, MMDetection models, Detectron2 models和HuggingFace object detection models等深度学习模型库,如果想支持新的模型库,可以参考目录下的模型文件,新建模型检测类。模型预测。原创 2023-01-03 20:33:49 · 9959 阅读 · 48 评论 -
[深度学习] 搭建行人重识别系统心得
普通的行人reid,分为特征提取和向量检索两大部分。其他一些商用技术是普通项目接触不到,大概用这两部分,再搜集数据,换换检测模型,提高reid模型就可以了。原创 2022-11-24 23:02:45 · 1780 阅读 · 0 评论 -
[python] 基于Gradio可视化部署机器学习应用
基于Gradio可视化部署机器学习应用。原创 2022-10-24 11:59:07 · 16803 阅读 · 11 评论 -
[python] 向量检索库Faiss使用指北
Faiss是一个由facebook开发以用于高效相似性搜索和密集向量聚类的库。它能够在任意大小的向量集中进行搜索。它还包含用于评估和参数调整的支持代码。Faiss是用C++编写的,带有Python的完整接口。一些最有用的算法是在GPU上实现的。。所谓相似性搜索是指通过比较多维空间中数据之间的相似性来搜索与输入数据最相似的目标数据。例如人脸识别中,通过比较人脸向量之前的距离来识别当前人脸与哪张人脸相似。因此,该技术被广泛应用于信息检索、计算机视觉、数据分析等领域。。...原创 2022-07-21 11:42:08 · 12753 阅读 · 2 评论 -
[深度学习] Python人脸识别库Deepface使用教程
deepface是一个Python轻量级人脸识别和人脸属性分析(年龄、性别、情感和种族)框架,提供非常简单的接口就可以实现各种人脸识别算法的应用。deepface官方仓库为deepface。deepface提供了多种模型,模型下载地址为deepface_models。安装方式: pip install deepface -i https://pypi.tuna.tsinghua.edu.cn/simpledeepface主要提供以下人脸识别算法,具体对应接口为:总体而言,这个项目的人脸识别模型识别效果还行,原创 2022-07-02 08:39:17 · 26687 阅读 · 16 评论 -
[深度学习] Python人脸识别库face_recognition使用教程
Python人脸识别库face_recognition使用教程face_recognition号称是世界上最简单的开源人脸识别库,可以通过Python或命令行识别和操作人脸。face_recognition提供了十分完整的技术文档和应用实例,人脸识别初学者建议研究该库上手。face_recognition的官方代码仓库为:face_recognition。face_recognition也有自己的官方中文文档,该文档详情见:face_recognition中文使用说明。本文所有的代码和大部分测试图像来自原创 2022-02-26 08:16:59 · 30567 阅读 · 4 评论 -
[深度学习] fast-reid入门教程
fast-reid入门教程ReID,全拼为Re-identification,目的是利用各种智能算法在图像数据库中找到与要搜索的目标相似的对象。ReID是图像检索的一个子任务,本质上是图像检索而不是图像分类。fast-reid是一个强悍的目标重识别Reid开源库,由京东开源管理。本文主要是介绍fast-reid的使用,随着技术的发展,对于cv从业人员有必要了解不同智能算法技术的应用。而且ReID是相对下游的任务,了解ReID的相关技术应用能学到很多东西。文章目录fast-reid入门教程1 fast-r原创 2022-01-14 11:51:35 · 21611 阅读 · 87 评论 -
[深度学习] CCPD车牌数据集介绍
CCPD是一个大型的、多样化的、经过仔细标注的中国城市车牌开源数据集。CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集。CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌)。在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖。CCPD中的每幅图像都包含大量的标注信息,但是CCPD数据集没有专门的标注文件,每张图像的文件名就是该图像对应的数据标注。标注最困难的部分是注释四个顶点的位置。为了原创 2021-06-09 19:03:20 · 55247 阅读 · 71 评论 -
[常用工具] cvat安装与使用指北
cvat是一个非常好用的标注工具,但是也是非常难以安装的标注工具,所以本文简单讲一讲如何安装与使用cvat。cvat最好在ubuntu18.04安装,windows平台安装难度很大,然后在其他平台使用。文章目录1 安装2 使用2.1 其他机器访问cvat服务器2.2 共享目录配置2.3 标注替换2.4 其他使用3 参考1 安装安装其实一步一步按照官方教程执行就好了,官方地址文档为cvat安装文档。安装最大的问题就是网速不好。具体步骤如下。step1 安装dockercvat在docker下运行,所原创 2021-02-10 09:27:49 · 19647 阅读 · 41 评论 -
[深度学习] imgaug边界框增强笔记
imgaug边界框增强笔记主要是讲述基于imgaug库对目标检测图像的边界框进行图像增强。本文需要掌握imgaug库的基本使用,imgaug库的基本使用见[深度学习] imgaug库使用笔记。文章目录0 示例图像和标注文件1 imgaug加载图像和标注数据2 边界框增强2.1 整张图像增强2.2 图像部分区域增强2.3 边界框超出图像范围解决办法3 保存增强图像和标注文件4 参考0 示例图像和标注文件示例图像如图所示# 对应的标注文件!cat demo.xml<?xml version原创 2021-02-02 19:26:36 · 1275 阅读 · 0 评论 -
[深度学习] ubuntu18.04配置深度学习环境笔记
文章目录1 nvidia驱动安装2 CUDA10.2安装3 cudnn安装4 参考最近装过很多ubuntu18.04系统的nvidia驱动,cuda10.2,cudnn7.6.5,发现每次都会出现一些小问题。总结了具体步骤,做个记录。主要分为三个步骤:驱动安装,cuda安装,cudnn安装。本文主要参考了博客Ubuntu18.04安装CUDA10、CUDNN和Ubuntu18.04+CUDA10.2 深度学习开发环境配置指南。本文也适用于其他linux系统安装不同版本cuda,cudnn。1 nvidi原创 2021-01-14 20:12:18 · 539 阅读 · 0 评论 -
[深度学习] Pytorch模型转换为onnx模型笔记
本文主要介绍将pytorch模型准确导出为可用的onnx模型。以方便OpenCV Dnn,NCNN,MNN,TensorRT等框架调用。所有代码见:Python-Study-Notes文章目录1 使用说明1.1 读取模型1.2 检测图像1.3 导出为onnx模型1.4 模型测试1.5 模型简化1.6 全部代码2 参考1 使用说明本文示例为调用pytorch预训练的mobilenetv2模型,将其导出为onnx模型。主要步骤如下:读取模型检测图像导出为onnx模型模型测试模型简化# 需要原创 2020-12-09 20:30:07 · 4869 阅读 · 4 评论 -
[深度学习] 深度学习优化器选择学习笔记
本文主要展示各类深度学习优化器Optimizer的效果。所有结果基于pytorch实现,参考github项目pytorch-optimizer(仓库地址)的结果。pytorch-optimizer基于pytorch实现了常用的optimizer,非常推荐使用并加星该仓库。文章目录1 简介2 结果A2GradExp(2018)A2GradInc(2018)A2GradUni(2018)AccSGD(2019)AdaBelief(2020)AdaBound(2019)AdaMod(2019)Adafactor原创 2020-11-19 17:54:35 · 1844 阅读 · 0 评论 -
[深度学习] imgaug库使用笔记
imgaug是一款非常有用的python图像增强库,非常值得推荐应用于深度学习图像增强。其包含许多增强技术,支持图像分类,目标检测,语义分割,热图、关键点检测等一系列任务的图像增强。本文主要介绍imgaug基本使用,以及应用关键点和边界框增强。官方代码仓库:imgaug官方入门文档:imgaug doc增强效果预览:overview of augmentersApi:imgaug dpi# 安装imgaug模块# pip install imgaug1 加载和增强图片1.1 读图i原创 2020-10-24 10:07:39 · 7463 阅读 · 3 评论 -
[深度学习] ImageAI库使用笔记
ImageAI是一个Python库,旨在使开发人员,研究人员和学生能够使用简单的几行代码来构建具有独立的深度学习和计算机视觉功能的应用程序和系统。ImageAI的官方GitHub存储库为https://github.com/OlafenwaMoses/ImageAI文章目录0 安装1 图像预测1.1 参数说明1.2 样例代码2 目标检测2.1 参数说明2.2 样例代码3 视频实时检测与分析3.1 参数说明3.2 样例代码4 其他功能介绍5 参考# 去掉警告import warningswarni原创 2020-08-07 13:31:38 · 3850 阅读 · 4 评论 -
[深度学习]DEEP LEARNING(深度学习)学习笔记整理
转载于博客http://blog.csdn.net/zouxy09一、概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之中的一个。尽管计算机技术已经取得了长足的进步。可是到眼下为止。还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑能够表现的十分强大。可是离开了这两者,它甚至都不能分辨转载 2017-10-15 09:12:39 · 7746 阅读 · 1 评论 -
[OpenCV实战]26 基于OpenCV实现选择性搜索算法
目录1 背景1.1 目标检测与目标识别1.2 滑动窗口算法1.3 候选区域选择算法2选择性搜索算法2.1 什么是选择性搜索?2.2 选择性搜索相似性度量2.3 结果3 代码4 参考本教程中,我们将了解目标检测中称为“选择性搜索”的重要概念。我们还将在OpenCV 中使用C ++和Python实现该算法。1 背景1.1 目标检测与目标识别目标...原创 2019-05-06 15:23:29 · 5242 阅读 · 0 评论 -
[OpenCV实战]35 使用Tesseract和OpenCV实现文本识别
目录1 如何在Ubuntu和windows上安装Tesseract1.1 在ubuntu18.04上安装Tesseract41.2 在Ubuntu 14.04,16.04,17.04,17.10上安装Tesseract 4.01.3 在windows下安装Tesseract 4.01.4 检查Tesseract版本2 Tesseract基本用法2.1 命令行用法2....原创 2019-07-16 11:29:04 · 5547 阅读 · 2 评论 -
[深度学习] ncnn安装和调用基础教程
目录1 介绍2 Ubuntu 18下ncnn安装和使用2.1 Ubuntu 18下ncnn编译安装2.2 Ubuntu 18下ncnn使用3 Windows 10下ncnn安装和使用3.1 Windows 10下ncnn编译安装3.2 Windows 10下ncnn使用4 参考1 介绍ncnn是腾讯开发的一个为手机端极致优化的高性能神经网络前向计算框架,无第...原创 2019-07-23 20:32:47 · 16574 阅读 · 9 评论 -
[深度学习] caffe分类模型训练、结果可视化、部署及量化笔记
本文主为caffe训练、结果可视化、部署及量化具体过程笔记。caffe目前官方已经停止支持了,但是caffe是目前工业落地最常用的深度学习框架。其实主要怕自己忘了,弄个备份,弄caffe很久了,很多东西都忘了。1 训练1.1 数据准备首先在caffe/data路径建立example_data文件夹,在example_data里建立三个文件夹。train文件为训练文件数据,val为验证文件...原创 2019-08-10 11:23:59 · 4392 阅读 · 12 评论 -
[python] mxnet60分钟入门Gluon教程
mxnet60分钟入门Gluon教程,适合做过深度学习的人使用。入门教程地址:https://beta.mxnet.io/guide/getting-started/crash-course/index.htmlmxnet安装方法:pip install mxnet1 在mxnet中使用ndarray处理数据ndarray类似numpy,在mxnet下通过ndarray处理数据,ndarr...原创 2019-08-13 11:39:20 · 2884 阅读 · 0 评论 -
[深度学习] ncnn编译使用
ncnn工程编译使用在linux下建立如CMakeLists文件即可编译生成ncnn工程# 最低cmake版本cmake_minimum_required(VERSION 3.2)# 工程名project(ncnnTest)# 添加OpenCV支持find_package(OpenCV REQUIRED)# 添加OpenMP支持FIND_PACKAGE(OpenMP...原创 2019-09-30 17:40:21 · 2799 阅读 · 0 评论 -
[OpenCV实战]13 OpenCV中使用Mask R-CNN进行对象检测和实例分割
目录1 背景介绍1.1什么是图像分割和实例分割1.2 Mask-RCNN原理2 Mask-RCNN在OpenCV中的使用2.1 模型下载2.2 模型初始化2.3 模型加载2.4 输出结果处理2.5 画图3 结果和代码3.1 结果3.2 代码4 参考Mask R-CNN具体内容见:https://arxiv.org/pdf/1703.06...原创 2019-04-02 19:38:15 · 10053 阅读 · 78 评论 -
[OpenCV实战]15 基于深度学习的目标跟踪算法GOTURN
目录1 什么是对象跟踪和GOTURN2 在OpenCV中使用GOTURN3 GOTURN优缺点4 参考在这篇文章中,我们将学习一种基于深度学习的目标跟踪算法GOTURN。GOTURN在Caffe中搭建,现在已移植到OpenCV Tracking API,我们将使用此API在C ++和Python中使用GOTURN。1 什么是对象跟踪和GOTURN对象跟踪的目标是跟踪视频...原创 2019-04-08 10:47:10 · 8991 阅读 · 18 评论 -
[OpenCV实战]17 基于卷积神经网络的OpenCV图像着色
目录1 彩色图像着色1.1 定义着色问题1.2 CNN彩色化结构1.3 从 中恢复彩色图像1.4 具有颜色再平衡的多项式损失函数1.5 着色结果2 OpenCV中实现着色2.1 模型下载2.2加载量化信息2.3 将图像转换为CIE Lab颜色空间3 代码3.1 图像着色代码3.2 视频着色代码4 参考技术有时会提高艺术,但有时也会破坏艺...原创 2019-04-10 16:58:25 · 6819 阅读 · 12 评论 -
[深度学习]深度学习中卷积操作和数学中卷积操作的异同
在深度学习(机器学习)中,卷积卷积实际上是信号处理中的自相关操作(cross-correlation),而不是数学上的卷积操作(Convonlution)。 对于自相关函数,具体定义如下: 设 x(t)、 y(t) 为连续信号,则 x(t)、 y(t) 的互相关函数为 Rxy(τ)=∫∞−∞x(t)y(t−τ)dtRyx(τ)=∫∞−∞y(t)x(t−τ)dt\begin{array}{l}原创 2017-11-25 21:51:08 · 4435 阅读 · 0 评论 -
[深度学习]RBM及DBN
转载于:http://blog.csdn.net/app_12062011/article/details/54313082我们目前的讨论的神经网络,虽然学习算法不同,但基本上架构还是相同的,就是都是分层网络,即神经元按层进行组织,层内神经元无连接,层间神经元间有连接。我们在这篇博文中,将讨论一种非常不同的神经网络,这类神经网络是由没层次关系的神经元全连接网络进化而来,采用有别于梯度下降算法进转载 2017-11-02 10:16:39 · 4600 阅读 · 0 评论 -
[深度学习]CNN的基础结构与核心思想
1. 概述 卷积神经网络是一种特殊的深层的神经网络模型,它的特殊性体现在两个方面,一方面它的神经元间的连接是非全连接的, 另一方面同一层中某些神经元之间的连接的权重是共享的(即相同的)。它的非全连接和权值共享的网络结构使之更类似于生物 神经网络,降低了网络模型的复杂度(对于很难学习的深层结构来说,这是非常重要的),减少了权值的数量。 回想一下BP神经网络。B转载 2017-10-13 19:34:37 · 8040 阅读 · 0 评论 -
[深度学习]神经网络的理解(MLP RBF RBM DBN DBM CNN 整理学习)
转载于 http://lanbing510.info/2014/11/07/Neural-Network.html开篇语文章整理自向世明老师的PPT,围绕神经网络发展历史,前馈网络(单层感知器,多层感知器,径向基函数网络RBF),反馈网络(Hopfield网络,联想存储网络,SOM,Boltzman及受限的玻尔兹曼机RBM,DBN,CNN)三部分进行讲述,给人一转载 2017-10-15 17:01:51 · 6676 阅读 · 0 评论 -
[深度学习]Contractive Autoencoder
转载于http://www.cnblogs.com/dupuleng/articles/4342952.html一、雅克比矩阵雅克比矩阵是一阶偏导,假设(x1,x2,....,xn)到(y1,y2,...,ym)的映射,相当于m个n元函数,它的Jacobian Matrix如下该矩阵表示x的微小波动对y的影响。雅克比矩阵与Hessian矩阵不同,hessian矩阵表示二阶偏导。转载 2017-10-30 16:03:55 · 5153 阅读 · 0 评论 -
[深度学习]降噪自动编码器
转载于http://www.cnblogs.com/neopenx/p/4370350.html起源:PCA、特征提取....随着一些奇怪的高维数据出现,比如图像、语音,传统的统计学-机器学习方法遇到了前所未有的挑战。数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效。数据挖掘?已然挖不出有用的东西。为了解决高维度的问题,出现的线性学习的PCA降维方法,PCA的数学转载 2017-10-27 15:18:05 · 5640 阅读 · 1 评论 -
[深度学习]卷积神经网络快速入门
卷积神经网络结构了解https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650728746&idx=1&sn=61e9cb824501ec7c505eb464e8317915&scene=0#wechat_redirect(推荐)一文读懂神经网络http://dataunion.org/11692.html(上文的补充)原创 2017-10-13 22:36:47 · 2797 阅读 · 0 评论 -
[tensorflow]tf.keras入门1-基本函数介绍
目录构建一个简单的模型序贯(Sequential)模型网络层的构造模型训练和参数评价模型训练模型的训练tf.data的数据集模型评估和预测基本模型的建立网络层模型模型子类函数构建回调函数Callbacks模型保存和载入网络参数保存Weights only配置参数保存Configuration only完整模型保存目前keras A...原创 2018-07-17 19:33:48 · 7583 阅读 · 0 评论 -
[tensorflow]tf.keras入门2-分类
目录Fashion MNIST数据库分类模型的建立模型预测总体代码主要介绍基于tf.keras的Fashion MNIST数据库分类,官方文档地址为:https://tensorflow.google.cn/tutorials/keras/basic_classification文本分类类似,官网文档地址为https://tensorflow.google.cn/tut...原创 2018-07-18 09:23:51 · 3234 阅读 · 0 评论 -
[tensorflow]tf.keras入门3-回归
目录波士顿房价数据集数据集数据归一化模型训练和预测模型建立和训练模型预测总结回归主要基于波士顿房价数据库进行建模,官方文档地址为:https://tensorflow.google.cn/tutorials/keras/basic_regression波士顿房价数据集数据集波士顿数据集是一个回归问题。每个类的观察值数量是均等的,共有 506 个观察,13...原创 2018-07-18 10:34:39 · 3916 阅读 · 0 评论 -
[OpenCV实战]12 使用深度学习和OpenCV进行手部关键点检测
目录1 背景2 实现3. 结果和代码4 参考手部关键点检测是在手指上找到关节以及在给定图像中找到指尖的过程。它类似于在脸部(面部关键点检测)或身体(人体姿势估计)上找到关键点。但是手部检测不同的地方在于,我们将整个手部视为一个对象。美国卡耐基梅隆大学智能感知实验室(CMU Perceptual Computing Lab)发布了手的关键点检测模型。详情见:https:/...原创 2019-03-27 17:06:41 · 12280 阅读 · 44 评论 -
[OpenCV实战]7 使用YOLOv3和OpenCV进行基于深度学习的目标检测
目录1 YOLO介绍1.1 YOLOv3原理1.2 为什么要将OpenCV用于YOLO?1.3 在Darknet和OpenCV上对YOLOv3进行速度测试2 使用YOLOv3进行对象检测(C++/Python)2.1 模型及配置文件下载2.2 初始化参数2.3 加载模型和获取输入图像2.4 单帧图像处理2.4.1 获取输出层的名称2.4.2 处理网络的输...原创 2019-03-13 17:37:53 · 14030 阅读 · 34 评论