
OpenCV开发实战
文章平均质量分 97
OpenCV工程实例,总结各种图像知识,通过实践进一步提高计算机视觉开发能力。主要参考learnopencv和opencv contrib
落痕的寒假
这个作者很懒,什么都没留下…
展开
-
[OpenCV实战]52 在OpenCV中使用颜色直方图
颜色直方图是一种常见的图像特征,顾名思义颜色直方图就是用来反映图像颜色组成分布的直方图。颜色直方图的横轴表示像素值或像素值范围,纵轴表示该像素值范围内像素点的个数或出现频率。颜色直方图属于计算机视觉中的基础概念,其常常被应用于图像相似度计算,,图像颜色平衡等。颜色直方图可以基于不同的颜色空间和坐标系来实现,本文主要基于RGB颜色空间和直角坐标系计算颜色直方图。原创 2022-12-01 20:46:47 · 4960 阅读 · 0 评论 -
[OpenCV实战]51 基于OpenCV实现图像极坐标变换与逆变换
在图像处理领域中,经常通过极坐标与笛卡尔直角坐标的互转来实现图像中圆形转为方形,或者通过极坐标反变换实现方形转圆形。例如钟表的表盘,人眼虹膜,医学血管断层都需要用到极坐标变换来实现圆转方。文章目录1 基础数学知识1.1 极坐标1.2 二维直角坐标系转换2 圆形区域转换为矩形区域2.1 预设值2.2 标准圆形转换2.2.1 Step1 获得各点的极坐标2.2.2 Step2 获得直角坐标2.2.3 Step3 获得OpenCV图像坐标2.2.4 示例代码2.3 任意角度圆形转换2.4 任意角度圆形顺时针转换原创 2021-03-15 17:34:55 · 8679 阅读 · 11 评论 -
[OpenCV实战]50 用OpenCV制作低成本立体相机
本文主要讲述利用OpenCV制作低成本立体相机以及如何使用OpenCV创建3D视频,准确来说是模仿双目立体相机,我们通常说立体相机一般是指双目立体相机,就是带两个摄像头的那种(目就是指眼睛,双目就是两只眼睛),这种双目摄像机模仿人的视觉,所以应用很广泛(主要是工业机器人视觉)。双目摄像机也广泛应用于无人驾驶,比如特斯拉、图森未来,小鹏汽车在自家的无人驾驶汽车上都安载了立体相机,双目和多目的都有。另外双目视觉加上深度学习还蛮好水论文的。本文主要说的是低成本,实际上没人这样干,有专门的双目立体相机,已经非常成熟原创 2021-02-16 17:22:46 · 2231 阅读 · 9 评论 -
[OpenCV实战]49 对极几何与立体视觉初探
本文主要介绍对极几何(Epipolar Geometry)与立体视觉(Stereo Vision)的相关知识。对极几何简单点来说,其目的就是描述是两幅视图之间的内部对应关系,用来对立体视觉进行建模,实际上就是一种约束条件,这样可以确定立体匹配时的最优解。对极几何是计算机视觉领域中一个基础概念,具体可以学习文章-对极几何(Epipolar)。对极几何/极几何在各个坐标系(世界坐标系,观察坐标系,像素坐标系)相互转换中是十分重要的一个概念。立体视觉是一种很常用的计算机视觉技术,其目的是从两幅或两幅以上的图像中推原创 2021-02-12 16:27:12 · 1874 阅读 · 1 评论 -
[OpenCV实战]48 基于OpenCV实现图像质量评价
本文主要介绍基于OpenCV contrib中的quality模块实现图像质量评价。图像质量评估Image Quality Analysis简称IQA,主要通过数学度量方法来评价图像质量的好坏。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:OpenCV_contrib库在windows下编译使用指南本文所有代码见:OpenCV-Practical-Exercise文章目录1 OpenCV中图像质量评价算法介绍1.1 相关背景1.2 OpenCV中图像质原创 2020-10-09 19:07:13 · 14489 阅读 · 17 评论 -
[OpenCV实战]47 基于OpenCV实现视觉显著性检测
人类具有一种视觉注意机制,即当面对一个场景时,会选择性地忽略不感兴趣的区域,聚焦于感兴趣的区域。这些感兴趣的区域称为显著性区域。视觉显著性检测(Visual Saliency Detection,VSD)则是一种模拟人类视觉并从图像中提取显著性区域的智能算法。如下面左边的图所示,人眼在观看该图片时会首先注意其中的小狗,自动忽略背景区域,小狗所在区域就是显著性区域。通过计算机视觉算法对左边的图像进行视觉显著性检测能够得到下图右边的结果,其中黑色区域为不显著区域,白色为显著区域,显著性检测在机器人领域、目标检测原创 2020-09-15 19:54:28 · 8105 阅读 · 8 评论 -
[OpenCV实战]46 在OpenCV下应用图像强度变换实现图像对比度均衡
本文主要介绍基于图像强度变换算法来实现图像对比度均衡。通过图像对比度均衡能够抑制图像中的无效信息,使图像转换为更符合计算机或人处理分析的形式,以提高图像的视觉价值和使用价值。本文主要介绍通过OpenCV contrib中的intensity_transform模块实现图像对比度均衡。如果想了解具体相关方法原理见冈萨雷斯主编的图像处理经典书籍 数字图像处理Digital Image Processing 第四版第三章。本文需要OpenCV contrib库,OpenCV contrib库的编译安装见:O原创 2020-09-10 19:42:47 · 3235 阅读 · 0 评论 -
[OpenCV实战]45 基于OpenCV实现图像哈希算法
目前有许多算法来衡量两幅图像的相似性,本文主要介绍在工程领域最常用的图像相似性算法评价算法:图像哈希算法(img hash)。图像哈希算法通过获取图像的哈希值并比较两幅图像的哈希值的汉明距离来衡量两幅图像是否相似。两幅图像越相似,其哈希值的汉明距离越小,通过这种方式就能够比较两幅图像是否相似。在实际应用中,图像哈希算法可以用于图片检索,重复图片剔除,以图搜图以及图片相似度比较。为什么图像哈希算法能够评估两幅图像的相似性,这就需要从哈希值说起,哈希值计算算法的本质就是对原始数据进行有损压缩,有损压缩后的固定原创 2020-08-27 19:32:15 · 6436 阅读 · 0 评论 -
[OpenCV实战]44 使用OpenCV进行图像超分放大
图像超分辨率(Image Super Resolution)是指从低分辨率图像或图像序列得到高分辨率图像。图像超分辨率是计算机视觉领域中一个非常重要的研究问题,广泛应用于医学图像分析、生物识别、视频监控和安全等领域。随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,相比传统图像超分方法,取得了更优的性能和效果。文章目录1 OpenCV dnn_superres模块介绍2 OpenCV dnn_superres模块使用2.1 图像超分放大单输出2.1.1 接口介绍2.1.2 示例代码2.1原创 2020-08-24 20:19:35 · 12240 阅读 · 19 评论 -
[OpenCV实战]43 使用OpenCV进行背景分割
运动背景分割法Background Segment主要是指通过不同方法拟合模型建立背景图像,将当前帧与背景图像进行相减比较获得运动区域。下图所示为检测图像:通过前面的检测帧建立背景模型,获得背景图像。然后检测图像与背景图像相减即为运动图像,黑色区域为背景,白色区域为运动目标,如下图所示:在OpenCV标注库中有两种背景分割器:KNN,MOG2。但是实际上OpenCV_contrib库的bgsegm模块中还有其他几种背景分割器。本文主要介绍OpenCV_contrib中的运动背景分割模型及其用法,并对原创 2020-08-14 13:16:18 · 5881 阅读 · 9 评论 -
[OpenCV实战]42 数码单反相机的技术细节
数码单反相机的技术细节在这篇文章中,我们将说明数码单反相机DSLR(Digital Single Lens Reflex Camera)的各个技术方面。本文将说明焦距(focal length),f-stop,景深(depth of field),光圈(aperture),快门速度(shutter speed),ISO设置(ISO setting),图像稳定(image stabilization)和自动包围曝光( auto exposure bracketing)。数码单反相机(或单反相机——数码单反原创 2020-05-12 17:15:54 · 1448 阅读 · 4 评论 -
[OpenCV实战]41 嵌入式计算机视觉设备选择
文章目录1 简介1.1 深度学习与传统计算机视觉1.2 性能考量1.3 社区支持2 结论3 参考在计算机视觉领域中,不同的场景不同的应用程序需要不同的解决方案。在本文中,我们将快速回顾可用于在单板计算机(指所有的逻辑线路、定时线路、内部存储器和外部界面都包含在一块单独的印制板上的一种微算机)上提供嵌入式视觉的各种选项。近年来,随着计算机视觉领域的巨大进步和廉价计算的可用性,计算机视觉正处于一个转折点,我们的设备开始从我们的汽车开始引起人们的注意。越来越多的计算机视觉算法正被部署到诸如无人机、安全摄像头、原创 2020-05-10 21:46:05 · 4593 阅读 · 2 评论 -
[OpenCV实战]40 计算机视觉工具对比
文章目录1 简介2 适用于计算机视觉的MATLAB2.1 为什么要使用MATLAB进行计算机视觉:优点2.2 为什么不应该将MATLAB用于计算机视觉:缺点3 适用于计算机视觉的OpenCV(C++)3.1 为什么要使用OpenCV(C++)进行计算机视觉:优点3.2 为什么不应该将OpenCV(C++)用于计算机视觉:缺点4 适用于计算机视觉的OpenCV(Python)4.1 为什么要使用Op...原创 2020-05-07 19:34:31 · 1437 阅读 · 0 评论 -
[OpenCV实战]39 在OpenCV中使用ArUco标记的增强现实
文章目录1 什么是ArUco标记?2 在OpenCV中生成ArUco标记3 检测Aruco标记4 增强现实应用5 总结和代码5.1 生成aruco标记5.2 使用aruco增强现实6 参考在本文中,我们将解释什么是ArUco标记以及如何使用OpenCV将其用于简单的增强现实任务。ArUco标记器已在增强现实,相机姿态估计和相机校准中使用了一段时间。让我们进一步了解它们。1 什么是ArUco标记...原创 2020-03-31 18:42:26 · 5348 阅读 · 0 评论 -
[OpenCV实战]38 基于OpenCV的相机标定
文章目录1 什么是相机标定?2 图像形成几何学2.1 设定2.1.1 世界坐标系2.1.2 相机坐标系2.1.3 图像坐标系2.2 图像形成方法总结3 基于OpenCV的相机标定原理3.1 相机标定相关参数3.2 相机标定的目标3.3 不同类型的相机标定方法4 相机标定示例步骤4.1 使用棋盘格模式定义真实世界坐标4.2 从不同的角度捕获棋盘的多个图像4.3 查找棋盘的2D坐标4.3.1 查找棋盘...原创 2020-03-06 15:29:19 · 32614 阅读 · 45 评论 -
[OpenCV实战]37 图像质量评价BRISQUE
文章目录1 介绍1.1 什么是图像质量评估Image Quality Assessment (IQA)?1.2 无参考图像质量评价1.3 图像质量评估(IQA)数据集2 盲/无参考图像空间质量评估器(BRISQUE)2.1 提取自然场景统计(NSS)2.1.1 MSCN(Mean Subtracted Contrast Normalized)系数2.1.2 相邻像素间的乘积关系2.2 计算特征向量...原创 2020-02-29 21:41:08 · 8989 阅读 · 6 评论 -
[OpenCV实战]36 使用OpenCV在视频中实现简单背景估计
目录1 时间中值滤波2 使用中值进行背景估计3 帧差分4 总结和代码5 参考许多计算机视觉应用中,硬件配置往往较低。在这种情况下,我们必须使用简单而有效的技术。在这篇文章中,我们将介绍一种这样的技术,用于在摄像机静态并且场景中有一些移动物体时估计场景的背景。这种情况并不罕见。例如,许多交通和监控摄像机都是严格固定的。1 时间中值滤波为了理解我们将在本文中描述的想法,...原创 2019-08-30 16:36:32 · 2327 阅读 · 0 评论 -
[OpenCV实战]35 使用Tesseract和OpenCV实现文本识别
目录1 如何在Ubuntu和windows上安装Tesseract1.1 在ubuntu18.04上安装Tesseract41.2 在Ubuntu 14.04,16.04,17.04,17.10上安装Tesseract 4.01.3 在windows下安装Tesseract 4.01.4 检查Tesseract版本2 Tesseract基本用法2.1 命令行用法2....原创 2019-07-16 11:29:04 · 5884 阅读 · 2 评论 -
[OpenCV实战]34 使用OpenCV进行图像修复
目录1 什么是图像修复1.1 INPAINT_NS : Navier-Stokes based Inpainting1.2 INPAINT_TELEA : Fast Marching Method based1.3 方法比较与函数实现2 结果与代码2.1 结果2.2 代码3 参考本文将描述一类称为图像修复的区域填充算法。想象一下找一张旧的家庭照片。你扫描它,它...原创 2019-05-28 15:53:03 · 15349 阅读 · 8 评论 -
[OpenCV实战]33 使用OpenCV进行Hough变换
目录1 什么是霍夫变换1.1 应用霍夫变换以检测图像中的线条1.2 累加器1.3 线条检测1.4 圆环的检测2 代码3 参考1 什么是霍夫变换霍夫变换是用于检测图像中的简单形状(诸如圆形,线条等)的特征提取方法。“简单”形状是可以仅由几个参数表示的形状。例如,一条线可以用两个参数(斜率,截距)表示,一个圆有三个参数:中心坐标和半径(x,y,r)。霍夫变换在图像中...原创 2019-05-27 16:53:38 · 4163 阅读 · 0 评论 -
[OpenCV实战]32 使用OpenCV进行非真实感渲染
目录1 保边滤波的频域变换1.1 保边滤波器Edge Preserving Filter1.1.1 函数调用1.1.2 edgePreservingFilter结果1.2 细节增强1.3 素描滤波器1.4 风格化滤波器2 代码3 参考有人认为使用高斯内核简单地模糊图像,检测边缘,并将两个图像组合以获得上面所示卡通化图像。虽然在大多数区域中所有图像看起来都...原创 2019-05-24 15:32:29 · 5644 阅读 · 0 评论 -
[OpenCV实战]31 使用OpenCV将一个三角形仿射变换到另一个三角形
目录1 什么是仿射变换?2 使用OpenCV进行三角形仿射变换2.1 定义输入和输出2.2 计算边界框2.3 裁剪图像和更改坐标2.4 计算仿射变换矩形2.5 应用仿射变换到三角形2.6 屏蔽三角形外的像素3 代码4 参考在本文中,我们会看到如何将一个三角形仿射变换到另一个三角形。在图形学的研究中,研究者常常进行三角形之间的变换操作,因为任意的3D表面都...原创 2019-05-23 10:58:10 · 6923 阅读 · 6 评论 -
[OpenCV实战]30 使用OpenCV实现图像孔洞填充
在本教程中,我们将学习如何填充二值图像中的孔。考虑下图左侧的图像。假设我们想要找到一个二值掩模,它将硬币与背景分开,如下图右侧图像所示。在本教程中,包含硬币的圆形区域也将被称为前景。请注意,硬币的边界是黑色的,与白色背景不同。因此,我们使用简单的图像阈值来将边界与背景分开。换句话说,我们说强度高于某个值(阈值)的像素是背景,其余像素是前景。上图中间图像显示通过阈值分割获得图像(黑色代表背景...原创 2019-05-10 14:48:56 · 9460 阅读 · 8 评论 -
[OpenCV实战]29 使用OpenCV实现红眼自动去除
目录1 红眼消除1.1 眼部检测1.2 红眼遮掩1.3 清除瞳孔掩模空洞1.4 红眼修复2 结果与完整代码2.1 结果2.2 代码3 参考在本教程中,我们将学习如何完全自动地从照片中消除红眼。如下图所示:当我们晚上拍摄的照片有红眼效果时,带着血腥眼睛的微笑的人会让人想起德古拉。使用照片编辑工具可以删除红眼,但是需要很长的时间来学习。构建一个可用于各种...原创 2019-05-09 15:30:53 · 4800 阅读 · 0 评论 -
[OpenCV实战]28 基于OpenCV的GUI库cvui
目录1 cvui的使用1.1 如何在您的应用程序中添加cvui1.2 基本的“hello world”应用程序2 更高级的应用3 代码4 参考有很多很棒的GUI库,例如Qt和imgui,可以与OpenCV一起使用,允许您在运行时调整参数。但是,在某些情况下,您可能没有(或不希望)此类库的依赖关系,例如,您没有使用Qt支持编译OpenCV,或者您无法使用OpenGL。在这...原创 2019-05-08 17:49:44 · 10011 阅读 · 2 评论 -
[OpenCV实战]27 在OpenCV下使用forEach进行并行像素访问
目录1 Mat像素访问1.1 使用at方法直接进行像素访问1.2 使用指针进行像素访问1.3 使用forEach方法进行像素访问1.4 将forEach与C ++ 11 Lambda一起使用2 性能比较与代码2.1 性能比较2.2 代码3 参考C++11扩展了for语句的语法。用这个新写法forEach,forEach可以遍历C类型的数组、初始化列表以及任何...原创 2019-05-07 14:42:11 · 4779 阅读 · 3 评论 -
[OpenCV实战]26 基于OpenCV实现选择性搜索算法
目录1 背景1.1 目标检测与目标识别1.2 滑动窗口算法1.3 候选区域选择算法2选择性搜索算法2.1 什么是选择性搜索?2.2 选择性搜索相似性度量2.3 结果3 代码4 参考本教程中,我们将了解目标检测中称为“选择性搜索”的重要概念。我们还将在OpenCV 中使用C ++和Python实现该算法。1 背景1.1 目标检测与目标识别目标...原创 2019-05-06 15:23:29 · 5373 阅读 · 0 评论 -
[OpenCV实战]25 使用OpenCV进行泊松克隆
目录1 Seamless Cloning实现1.1 Seamless Cloning实例1.2 正常克隆(NORMAL_CLONE)与混合克隆(MIXED_CLONE)1.2.1 Normal Cloning Result1.2.2 Mixed Cloning Result1.2.3 MONOCHROME TRANSFER Result2 Seamless Clonin...原创 2019-05-05 17:02:10 · 4671 阅读 · 0 评论 -
[OpenCV实战]24 使用OpenCV进行曝光融合
目录1 什么是曝光融合2 曝光融合的原理3 代码与结果4 参考本教程中,我们将了解使用OpenCV的Exposure Fusion(曝光融合)。1 什么是曝光融合曝光融合是一种将使用不同曝光设置拍摄的图像合成为一张看起来像色调映射的高动态范围(HDR)图像的图像的方法。当我们使用相机拍摄照片时,每个颜色通道只有8位来表示场景的亮度。然而,我们周围世界的亮度理论上可以从0...原创 2019-05-05 10:37:58 · 10033 阅读 · 22 评论 -
[OpenCV实战]23 使用OpenCV获取高动态范围成像HDR
目录1 背景1.1 什么是高动态范围(HDR)成像?1.2 高动态范围(HDR)成像如何工作?2 代码2.1 运行环境配置2.2 读取图像和曝光时间2.3 图像对齐2.4恢复相机响应功能2.5 合并图像2.6 色调映射2.7 工程代码3 参考在本教程中,我们将学习如何使用不同曝光设置拍摄的多张图像创建高动态范围图像(HDR)。1 背景1...原创 2019-04-30 16:44:58 · 8516 阅读 · 0 评论 -
[OpenCV实战]22 使用EigenFaces进行人脸重建
目录1 背景1.1 什么是EigenFaces?1.2 坐标的变化2面部重建2.1 计算新面部图像的PCA权重2.2使用EigenFaces进行面部重建3 参考在这篇文章中,我们将学习如何使用EigenFaces实现人脸重建。我们需要了解主成分分析(PCA)和EigenFaces。1 背景1.1 什么是EigenFaces?在我们之前的文章中,我们解...原创 2019-04-24 16:31:50 · 5006 阅读 · 10 评论 -
[OpenCV实战]21 使用OpenCV的Eigenface
目录1 PCA1.1 方差是什么1.2 什么是PCA1.3 什么是矩阵的特征向量和特征值?1.4 如何计算PCA2 什么是EigenFaces?2.1 将图像作为向量2.2 如何计算如何计算EigenFaces3 使用OpenCV进行主成分分析(PCA)4 参考在这篇文章中,我们将学习Eigenface(特征脸),主成分分析(PCA)在人脸中的应用。...原创 2019-04-23 19:48:31 · 4853 阅读 · 0 评论 -
[OpenCV实战]20 使用OpenCV实现基于增强相关系数最大化的图像对齐
目录1 背景1.1 彩色摄影的一个简短而不完整的历史1.2 OpenCV中的运动模型2 使用增强相关系数最大化(ECC)的图像对齐2.1 findTransformECC在OpenCV中的示例2.2 重建Prokudin-Gorskii系列图像3 参考上面左边的图像是由Prokudin-Gorskii拍摄的历史系列照片中的一部分。这张照片是由一位俄罗斯摄影...原创 2020-06-08 21:28:32 · 9053 阅读 · 0 评论 -
[OpenCV实战]19 使用OpenCV实现基于特征的图像对齐
目录1 背景1.1 什么是图像对齐或图像对准?1.2 图像对齐的应用1.3 图像对齐基础理论1.4 如何找到对应点2 OpenCV的图像对齐2.1 基于特征的图像对齐的步骤2.2 代码3 参考在这篇文章中,我们将学习如何使用OpenCV执行基于特征的图像对齐。我们将使用移动电话拍摄的表格的照片与表格的模板对齐。我们将使用的技术通常被称为“基于特征图像对齐”,...原创 2019-04-17 11:08:18 · 13420 阅读 · 5 评论 -
[OpenCV实战]18 Opencv中的单应性矩阵Homography
目录1 介绍1.1 什么是Homography1.2 使用Homography进行图像对齐1.3 Homography的应用-全景拼接2 Homography的计算3 总结4 参考《圣经》记载,当时人类联合起来兴建希望能通往天堂的高塔;为了阻止人类的计划,上帝让人类说不同的语言,使人类相互之间不能沟通,计划因此失败。像“Homography”这样的术语经常提醒我...原创 2019-04-16 15:48:31 · 11348 阅读 · 5 评论 -
[OpenCV实战]17 基于卷积神经网络的OpenCV图像着色
目录1 彩色图像着色1.1 定义着色问题1.2 CNN彩色化结构1.3 从 中恢复彩色图像1.4 具有颜色再平衡的多项式损失函数1.5 着色结果2 OpenCV中实现着色2.1 模型下载2.2加载量化信息2.3 将图像转换为CIE Lab颜色空间3 代码3.1 图像着色代码3.2 视频着色代码4 参考技术有时会提高艺术,但有时也会破坏艺...原创 2019-04-10 16:58:25 · 6993 阅读 · 12 评论 -
[OpenCV实战]16 使用OpenCV实现多目标跟踪
目录1 背景介绍2 基于MultiTracker的多目标跟踪2.1 创建单个对象跟踪器2.2 读取视频的第一帧2.3 在第一帧中确定我们跟踪的对象2.4 初始化MultiTrackerer2.5 更新MultiTracker和显示结果3 结果和代码4 参考在这篇文章中,我们将介绍如何在OpenCV中使用MultiTracker类实现多目标跟踪API。在深入了...原创 2019-04-08 20:32:00 · 17407 阅读 · 48 评论 -
[OpenCV实战]15 基于深度学习的目标跟踪算法GOTURN
目录1 什么是对象跟踪和GOTURN2 在OpenCV中使用GOTURN3 GOTURN优缺点4 参考在这篇文章中,我们将学习一种基于深度学习的目标跟踪算法GOTURN。GOTURN在Caffe中搭建,现在已移植到OpenCV Tracking API,我们将使用此API在C ++和Python中使用GOTURN。1 什么是对象跟踪和GOTURN对象跟踪的目标是跟踪视频...原创 2019-04-08 10:47:10 · 9358 阅读 · 18 评论 -
[OpenCV实战]14 使用OpenCV实现单目标跟踪
目录1 背景1.1 什么是目标跟踪1.2 跟踪与检测2 OpenCV的目标跟踪函数2.1 函数调用2.2 函数详解2.3 综合评价3 参考在本教程中,我们将了解OpenCV 3中引入的OpenCV目标跟踪API。我们将学习如何以及何时使用OpenCV 3中提供的8种不同的跟踪器BOOSTING,MIL,KCF,TLD,MEDIANFLOW,GOTURN,MOSS...原创 2019-04-04 17:37:23 · 32988 阅读 · 50 评论 -
[OpenCV实战]13 OpenCV中使用Mask R-CNN进行对象检测和实例分割
目录1 背景介绍1.1什么是图像分割和实例分割1.2 Mask-RCNN原理2 Mask-RCNN在OpenCV中的使用2.1 模型下载2.2 模型初始化2.3 模型加载2.4 输出结果处理2.5 画图3 结果和代码3.1 结果3.2 代码4 参考Mask R-CNN具体内容见:https://arxiv.org/pdf/1703.06...原创 2019-04-02 19:38:15 · 10502 阅读 · 78 评论