一、实验目的
1)理解并熟练掌握最小生成树的两种算法实现(Kruskal算法【加边】 && prim算法【加点】)及其应用。
2)熟练掌握带权图的存储结构。
3)熟练掌握,学会运用“贪心”这一思想。
二、实验环境
1)自备计算机,windows操作系统以及相关的编译器(如Devc++)。
三、实验要求
1)完成带权图的存储和两种算法对应的最小生成树的生成。
2)灵活地把最小生成树应用于解决生活实际问题。
四、实验原理
五、实验内容
代码如下:
1.用Kruskal算法实现:
#include <stdio.h>
#define VER_LEN (101)
#define EDGE_LEN (10001)
typedef struct {
int u,v,cost;
}edge;
edge Edge[EDGE_LEN];
int Parent[VER_LEN];
int Size[VER_LEN];
int Flag[VER_LEN];
// 排序,按照边的权重,从小到大排序
void sort(int edge_num){
int i,j;
int temp_u, temp_v, temp_cost;
for(i = 1; i < edge_num; i++) {
for(j = 1; j <= edge_num - i; j++) {
if(Edge[j].cost > Edge[j+1].cost) {
temp_u = Edge[j].u;
temp_v = Edge[j].v;
temp_cost = Edge[j].cost;
Edge[j].u = Edge[j+1].u;
Edge[j].v = Edge[j+1].v;
Edge[j].cost = Edge[j+1].cost;
Edge[j+1].u = temp_u;
Edge[j+1].v = temp_v;
Edge[j+1].cost = temp_cost;
}
}
}
}
void init(int ver_num) {
int i;
for(i=1; i<=ver_num; i++) {
Parent[i]=i;// 将parent初始化为自身
Size[i]=1;/*将size初始化为1,用于按秩压缩(
如果不需要进行按秩压缩,不需要这个数组信息)*/
}
}
int find(int vertex) {
if(vertex != Parent[vertex]) {
Parent[vertex]=find(Parent[vertex]);//路径压缩
}
return Parent[vertex];
}
int union_set(int i) {
int parent_u = find(Edge[i].u);
int parent_v = find(Edge[i].v);
// 节点u和v已经在同一颗树上了
if(parent_u == parent_v) return 0;
// 按秩压缩,将秩小一些的树加入到秩大一些的树
if(Size[parent_u] > Size[parent_v]) {
Parent[parent_v] = parent_u;
Size[parent_u] += Size[parent_v];
} else {
Parent[parent_u] = parent_v;
Size[parent_v] += Size[parent_u];
}
return 1;
}
void Kruskal(int ver_num, int edge_num) {
int i,counter;
// 排序,按照边的权重,从小到大排序
sort(edge_num);
// 进行初始化
init(ver_num);
counter = 0;
// 按照边的权重,从小到大遍历所有的边
// 直到编译完所有边,或者生成了最小生成树为止
for(i = 1; i <= edge_num && counter < ver_num-1; i++) {
// 当新加入的边会形成环时,需要舍弃
if(union_set(i) == 0) continue;
// 将新加入的边的编号保存在Flag数组中,以便输入
counter++;
Flag[counter] = i;
}
}
int main() {
int i,ver_num, edge_num;
printf("输入顶点数和边数:\n");
scanf("%d %d", &ver_num, &edge_num);
printf("输入图的信息:\n");
for(i = 1; i <= edge_num; i++)
scanf("%d %d %d", &Edge[i].u, &Edge[i].v, &Edge[i].cost);
Kruskal(ver_num, edge_num);
printf("Kruskal算法输出最小生成树:\n");
for(i = 1; i < ver_num; i++)
printf("%d to %d\n", Edge[Flag[i]].u, Edge[Flag[i]].v);
return 0;
}
2.用prim算法实现:
#include <stdio.h>
#define MAXINT (0X7FFF7FFF)
#define VER_LEN (101)
typedef struct {
int cost;
int flag;
int pre;
} vertex;
int Graph[VER_LEN][VER_LEN];
vertex Vertex[VER_LEN];
// 初始化图的数据,初始化为两点之间互不连接
void init_graph(int length) {
int i, j;
for(i = 1; i <= length; i++)
for(j = 1; j <= length; j++)
Graph[i][j] = MAXINT;
}
void prim(int start, int length) {
int i,j;
int min_cost, min_v;
// 根据初始顶点start,初始为各顶点的相关信息
// cost表示权重,flag表示是否已经加入最小生成树,pre表示其parent节点
for(i = 1; i <= length; i++) {
Vertex[i].cost = Graph[start][i];
Vertex[i].flag = 0;
Vertex[i].pre = start;
}
// 将初始顶点加入到最小生成树中
Vertex[start].cost = 0;
Vertex[start].flag = 1;
for(i = 2; i <= length; i++) {
min_cost = MAXINT;
// 找出cost最小的边
for(j = 1; j <= length; j++) {
if(Vertex[j].flag == 0 && Vertex[j].cost < min_cost) {
min_cost = Vertex[j].cost;
min_v = j;
}
}
// 将上面找出来的cost最小的边的顶点加入到最小生成树中
Vertex[min_v].flag = 1;
// 根据上面新加入到最小生成树的顶点调整各顶点的cost值
for(j = 1; j <= length; j++) {
if(Vertex[j].flag == 0 && Vertex[j].cost > Graph[min_v][j]) {
Vertex[j].cost = Graph[min_v][j];
Vertex[j].pre = min_v;
}
}
}
}
int main() {
int i;
int ver_num, edge_num;
int edge_u, edge_v, cost;
printf("输入顶点数和边数:\n");
scanf("%d %d", &ver_num, &edge_num);
init_graph(ver_num);
printf("输入图的信息:\n");
for(i = 1; i <= edge_num; i++) {
scanf("%d %d %d", &edge_u, &edge_v, &cost);
Graph[edge_u][edge_v] = cost;
Graph[edge_v][edge_u] = cost;
}
prim(1, ver_num);
printf("prim算法输出最小生成树:\n");
for(i = 2; i <= ver_num; i++)
printf("%d to %d, the cost is %d\n", Vertex[i].pre, i, Vertex[i].cost);
return 0;
}
六、运行结果
七、实验总结
通过这一实验,我更加深入地理解了“贪心”的思想,熟练掌握了最小生成树的两种算法(Kruskal【加边】和prim【加点】)和图的存储结构,并且能够用它们来解决生活中的一些实际问题。