随机分布嵌入使短时高维序列可预测

【Randomly Distributed Embedding Making Short-term High-dimensional Data Predictable】的阅读与感悟。

       随着大数据时代的不断推进,数据越来越多,能否从复杂的数据中提取出有价值的信息,取决于数据处理的方法。对于现实世界中的非线性动态系统的预测一直都是个挑战,非线性动态系统往往具有时间短、维数高的特点,这恰好也是数据准确预测的一个难题。

       对于数据处理,大多数情况下都是以时间为自变量。1994年由Hamilton创作的时间序列分析一书,将对于时间序列的分析应用于经济学。书中介绍了数据处理比较基础的差分方程和延迟操作符;介绍了平稳自回归滑动平均模型(stationary ARMA processes),该模型是研究时间序列的重要方法,它由自回归模型(AR),与移动平均模型(MA)为基础混合而成,在市场研究中常用于长期的追踪资料的研究。可是该模型也是具有一定的局限性,譬如在我阅读中发现,该模型对于自变量与因变量之间存在线性关系的时候,用最小二乘法可以估算出参数,并且估算的结果比较精确,当二者之间是非线性的关系时,便难以求得ARMA模型参数的准确估值。书中还简单谈论了谱的参数化和非参数化,对于独立数据的大数定律,利用切比雪夫不等式进行连续相关的观测。

       大数据时代,以时间序列为主要模式的积累,从微观的基因表达数据,到细微的神经活动数据,再到宏观的生态和大气数据。要从这样复杂的数据中,寻求准确的预报与预测,尤其时基于这样有着序列长度短、维度高的数据集。通常,短时、高维这两个性质都被认为时准确性和鲁棒性预测的障碍,因为短时数据就会导致更少的数据模式,高维系统的变量可能带来维度的问题。例如在基于模型的方法中的回归方法(Regression Method)。回归方法通常会应用于自变量数据具有高度相关性的拟合中,这种回归方法可以在原来的偏差基础上再增加一个偏差度来减小总体的标准偏差。然而,回归方法如果应用于短时高维数据集上时,由于高维变量需要在运算模型中加入更多的参数或者权重,从而在数据集时间短的时候,不能够有效准确的估算这些参数和权重。而对于基于经验的无模型方法(empiricism-based model-free method),通常利用的是最近相邻的值来预测目标值。一个系统有朝着某个稳态发展的趋势,这个稳态叫做吸引子,吸引子描述的是运动的收敛类型,存在于相空间。然而,在短时高维特征的数据集中,短时数据使得高维空间中用来描述动态特征的吸引子变得稀疏,因此便会产生错误的最近相邻问题。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想学好数学的吕潇湘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值