有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~
1 基本定义
TVF-EMD_MFE_SVM_LSTM 神经网络时序预测算法是一种结合了变分模态分解(TVF-EMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的复杂预测方法。下面是对该算法的详细介绍:
1. 变分模态分解(TVF-EMD)
-
TVF-EMD 是一种自适应信号分解方法,它将复杂时间序列分解为多个固有模态函数(IMF)和一个残差项。TVF-EMD 是经验模态分解(EMD)的一种变体,通过引入变分框架来优化分解过程,使得分解更加精确和稳定。
-
通过 TVF-EMD,算法能够有效地提取时间序列中的复杂模式和趋势,为后续的预测提供更准确的数据表示。每个 IMF 代表了原始时间序列中的一个特定频率或尺度的成分,而残差项则包含了剩余的趋势或噪声。
2. 多尺度特征提取(MFE)
-
MFE 技术用于从 TVF-EMD 分解得到的 IMF 和残差项中提取多尺度特征。这些特征包括统计特性、频域特性、时域特性等,能够全面描述每个 IMF 和残差项在不同尺度上的行为。
-
通过 MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富