五、优化算法、损失函数、优化器的搭配建议



前言

  • 我们对不同的算法和函数还有优化器的一般搭配组合做了总结。

一、损失函数与激活函数的搭配方式

  • 二分类任务:
    • 激活函数:sigmoid
    • 损失函数:BCEWithLogitsLoss 或 BCELoss
  • 多分类任务:
    • 激活函数:softmax
    • 损失函数:CrossEntropyLoss
  • 回归任务:
    • 激活函数:线性输出或 ReLU
    • 损失函数:MSELoss
  • 多标签分类任务:
    • 激活函数:sigmoid
    • 损失函数:BCEWithLogitsLoss

二、网络优化算法中的搭配

  • Momentum(带动量的梯度下降):

    • 常与 ReLU 激活函数和 CrossEntropyLoss(分类任务)搭配使用。
  • Adam(Adaptive Moment Estimation):

    • ReLU 激活函数 + CrossEntropyLoss(分类任务)或 MSELoss(回归任务)。
    • Adam 适用于大多数激活函数和损失函数,尤其适合用于复杂网络。
  • RMSprop:

    • ReLU 激活函数 + CrossEntropyLoss(分类任务)或 MSELoss(回归任务)。
  • Adagrad:

    • 常与 ReLU 激活函数和 CrossEntropyLoss(分类任务)或 MSELoss(回归任务)搭配。

三、激活函数、损失函数与优化器的搭配

  • 分类任务:

    • 二分类(2类):
      • 激活函数:sigmoid
      • 损失函数:BCEWithLogitsLoss 或 BCELoss
      • 优化器:SGD、Adam、RMSprop
    • 多分类(N类):
      • 激活函数:softmax
      • 损失函数:CrossEntropyLoss
      • 优化器:SGD、Adam、RMSprop
  • 回归任务:

    • 激活函数:通常不使用激活函数或使用 ReLU(对正值的预测)
    • 损失函数:MSELoss(均方误差损失)
    • 优化器:SGD、Adam、RMSprop
  • 多标签分类任务:

    • 激活函数:sigmoid(每个标签独立)
    • 损失函数:BCEWithLogitsLoss
    • 优化器:Adam、SGD

四、选择优化器的主要依据是

  • 任务类型:不同的任务(分类、回归等)可能对优化器的选择有所不同。
  • 数据集规模和训练效率:某些优化器(如 Adam)在大数据集和复杂模型上训练时表现更好,而 SGD 通常在数据量较小的情况下表现稳定。
  • 模型结构:例如,对于非常深的网络,某些优化器(如 Adam、RMSprop)能帮助更快地收敛,避免梯度消失或爆炸的问题。

总结

  • 我们在不同的任务以及不同的任务中,要选取与之匹配的损失函数以及激活函数还有优化算法,只有平衡了这些东西,模型才能有更好的输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值