这一节, Prof.Strang 接着上一讲的内容作了一些补充
Eigenvector Basis
上一讲我们讲到的那个投影的例子,如果使用 eigenvector 做 basis, 投影变换在此基下的矩阵形式就是一个对角阵. 那么, 这个结果是否通用尼? 答案是肯定的.
本节我们只考虑 m=nm=nm=n, 输入输出使用同样的 basis 的情况.
Proposition 1: 如果使用 eigenvectors { x1,x2,...,xn}\{x_1,x_2,...,x_n\}{ x1,x2,...,xn} 作为线性变换 TTT 的输入输出的 basis, 则 TTT 的矩阵形式是对角阵.
其实这也不难理解. 从特征多项式开始, 我们有
Axi=λixi\bm{A} \bm{x}_i=\lambda_i \bm{x}_iAxi=