MIT 线性代数 Linear Algebra 30:线性变换和其矩阵形式

在这一节的开始,让我们先短暂忘记矩阵,研究什么是线性变换。实际上,线性变换是比矩阵更 general 的定义。只不过在 linear algebra 中我们用矩阵来分析线性变换。

线性变换

满足以下两个条件的变换 T T T 我们称为线性变换
T ( v + w ) = T ( v ) + T ( W ) T(v+w)=T(v)+T(W) T(v+w)=T(v)+T(W)

T ( c v ) = c T ( v ) T(cv)=cT(v) T(cv)=cT(v)

可以看到,线性变换实际上就是一个线性函数:输入线性组合的输出等于输出的线性组合。

Fact 1: T ( 0 ) = 0 T(0) = 0 T(0)=0.


Example 1 (Projection): 投影是一种线性变换,比如我们考虑把空间中任意一个向量投影到地平线上,这个变换是线性的。

Example 2 (Rotation): 旋转也是一个线性变换,毕竟叠加后旋转还是旋转后叠加,效果是一样的。

Non-example 3 (Shifting the whole plane): 平移整个平面 (即把所有vector加一个constant vector d \bm{d} d) 并不是线性变换.
下图很清晰可以看出,而且 T ( 0 ) = 0 T(0) = 0 T(0)=0 首先就不满足。

在这里插入图片描述
Non-example 4 (length): 取一个向量的长度 T ( v ) = ∥ v ∥ T(\bm{v})=\|\bm{v}\| T(v)=v 并不是线性变换。

这个变换 T : R n → R T:\mathbb{R}^n\to\mathbb{R} T:RnR, 但显然他不是线性变换因为 T ( − v ) ≠ − T ( v ) T(-\bm{v})\neq -T(\bm{v}) T(v)=T(v).


Fact 2: Matrix A \bm{A} A 是一种线性变换.

A ( c v + d w ) = c A v + d A w \bm{A}(c\bm{v}+d\bm{w})=c\bm{A}\bm{v}+d\bm{A}\bm{w} A(cv+dw)=cAv+dAw

Fact 3: 对于任意一个线性变换 T T T, 如果我们选取了一组基 v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn 来表示任意的输入,选取一组基 w 1 , w 2 , . . . , w m w_1,w_2,...,w_m w1,w2,...,wm 来表示任意的输出,那么线性变换 T T T 总能写成在这两组基下的矩阵形式

线性变换的矩阵表示

如果输入基 v 1 , v 2 , . . . , v n \bm{v_1},\bm{v_2},...,\bm{v_n} v1,v2,...,vn,输出基 w 1 , w 2 , . . . , w m \bm{w_1},\bm{w_2},...,\bm{w_m} w1,w2,...,wm 均已选取。我们怎么确定线性组合的矩阵形式尼?

其实很简单,我们只需要选取基变换坐标作为矩阵的每个entry即可,请看
T ( v 1 ) = a 11 w 1 + a 21 w 2 + . . . + a m 1 w m T(\bm{v_1})=a_{11} \bm{w_1} + a_{21}\bm{ w_2} + ... + a_{m1} \bm{w_m} T(v1)=a11w1+a21w2+...+am1wm

T ( v 2 ) = a 12 w 1 + a 22 w 2 + . . . + a m 2 w m T(\bm{v_2})=a_{12}\bm{ w_1} + a_{22} \bm{w_2} + ... + a_{m2} \bm{w_m} T(v2)=a12w1+a22w2+...+am2wm

. . . ... ...

T ( v m ) = a 1 n w 1 + a 2 n w 2 + . . . + a m n w m T(\bm{v_m})=a_{1n} \bm{w_1} + a_{2n} \bm{w_2} + ... + a_{mn} \bm{w_m} T(vm)=a1nw1+a2nw2+...+amnwm

其中 a m n a_{mn} amn 即为基变换坐标的每个 entry。对于任意一个输入 v \bm{v} v,它在 { v 1 , v 2 , . . . , v n } \{\bm{v_1},\bm{v_2},...,\bm{v_n}\} {v1,v2,...,vn} 有一个坐标,如果我们把矩阵写成基的坐标,那么他经过线性变换后得到的刚刚好是输出 T ( v ) T(\bm{v}) T(v) { w 1 , w 2 , . . . , w m } \{\bm{w_1},\bm{w_2},...,\bm{w_m}\} {w1,w2,...,wm} 下的坐标。矩阵形式可以写为

T ( V ) = W A T(\bm{V})=\bm{WA} T(V)=WA

Remark:

  1. 一般我们默认的极坐标是 单位阵的各个column,但实际上我们可以选取任意线性独立的vector在做基。关于这一点,我们下面给出一个例子。
  2. 我们考虑的不一定是向量空间,也有可能是函数空间,换句话说, v 1 , v 2 , . . . , v n v_1,v_2,...,v_n v1,v2,...,vn w 1 , w 2 , . . . , w m w_1,w_2,...,w_m w1,w2,...,wm 可以不是向量,而可以是一些基础函数。在本文的末尾,我们会给出一个相应的例子。

Example 5 (Projection): 考虑线性变换 T : R 2 → R 2 T: \mathbb{R}^2\to\mathbb{R}^2 T:R2R2 把平面上任意向量投影到 y = x y=x y=x 这条直线上,求 T \bm{T} T 的矩阵形式。

求矩阵型知识浅,我们得先确定一组基。

1)首先,我们选取 basis v 1 = w 1 = [ 1 , 0 ] ⊤ v_1=w_1=[1,0]^\top v1=w1=[1,0], v 2 = w 2 = [ 0 , 1 ] ⊤ v_2=w_2=[0,1]^\top v2=w2=[0,1]. 这是一组最方便的basis。此时,我们有
T ( v 1 ) = [ 1 2 ,   1 2 ] ⊤ = 1 2 w 1 + 1 2 w 2 T(v_1)=\left[\frac{1}{2},~\frac{1}{2}\right]^\top=\frac{1}{2}w_1+\frac{1}{2}w_2 T(v1)=[21, 21]=21w1+21w2

T ( v 2 ) = [ 1 2 ,   1 2 ] ⊤ = 1 2 w 1 + 1 2 w 2 T(v_2)=\left[\frac{1}{2},~\frac{1}{2}\right]^\top=\frac{1}{2}w_1+\frac{1}{2}w_2 T(v2)=[21, 21]=21w1+21w2

因此 T T T 在选取的 basis 下的矩阵为
A = [ 1 2 1 2 1 2 1 2 ] \bm{A}=\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \end{bmatrix} A=[21212121]

2)我们也可以选取 basis v 1 = w 1 = [ 1 2 , 1 2 ] ⊤ v_1=w_1=[\frac{1}{2},\frac{1}{2}]^\top v1=w1=[21,21], v 2 = w 2 = [ − 1 2 , 1 2 ] ⊤ v_2=w_2=[-\frac{1}{2},\frac{1}{2}]^\top v2=w2=[21,21]. 即,”顺着 y = x y=x y=x 的方向“ 和 ”与 y = x y=x y=x 垂直的方向“。此时,我们有
T ( v 1 ) = [ 1 2 ,   1 2 ] ⊤ = w 1 + 0 w 2 T(v_1)=\left[\frac{1}{2},~\frac{1}{2}\right]^\top= w_1+0w_2 T(v1)=[21, 21]=w1+0w2

T ( v 2 ) = [ − 1 2 ,   1 2 ] ⊤ = 0 w 1 + 0 w 2 T(v_2)=\left[-\frac{1}{2},~\frac{1}{2}\right]^\top=0w_1+0w_2 T(v2)=[21, 21]=0w1+0w2

因此 T T T 在选取的 basis 下的矩阵为
A = [ 1 0 0 0 ] \bm{A}=\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \end{bmatrix} A=[1000]

实际上,如果我们把第一组基下得到的 A \bm{A} A 特征值分解
A = [ 1 2 1 2 1 2 1 2 ] = 1 2 [ 1 − 1 1 1 ] [ 1 0 0 0 ] 1 2 [ 1 1 − 1 1 ] \bm{A}=\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \end{bmatrix}=\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & -1 \\ 1 & 1 \\ \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ \end{bmatrix}\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ -1 & 1 \\ \end{bmatrix} A=[21212121]=2 1[1111][1000]2 1[1111]

可以看到,实际上我们第二组基选取的就是特征值的方向,此时得到的矩阵是对角阵,其实就是特征值分解的结果。


Example 6 (basis of function): 好,最后我们再看一个以函数作为basis的例子。考虑变换 T ( f ( x ) ) = d f d x T(f(x))=\frac{df}{dx} T(f(x))=dxdf, 求导实际上是一个线性变换,只要我们有了一些基本函数的求导公式,就能把这些函数作为基,把他们线性组合的导求出来。比如,我们把输入的 basis 选为 { 1 , x , x 2 } \{1,x,x^2\} {1,x,x2},输出的 basis 选为 { 1 , x } \{1,x\} {1,x},那么,给定输入
[ c 1 , c 2 , c 3 ] ⊤ = c 1 + c 2 x + c 3 x 2 [c_1,c_2,c_3]^\top=c_1 +c_2x+c_3x^2 [c1,c2,c3]=c1+c2x+c3x2

我们可以得到输出
T ( c 1 + c 2 x + c 3 x 2 ) = c 2 + 2 c 3 x = [ c 2 , 2 c 3 ] ⊤ T(c_1 +c_2x+c_3x^2)=c_2 + 2c_3 x=[c_2,2c_3]^\top T(c1+c2x+c3x2)=c2+2c3x=[c2,2c3]

因此, T T T 的矩阵形式可以写为
A = [ 0 1 0 0 0 2 ] \bm{A}=\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix} A=[001002]

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值