数学基础回顾

  1. 一个圆周的长度是 2 π r 2\pi r 2πr, 总共 360 360 360 度。我们把长度为半径 r r r 的圆周对应的角度称为 1 1 1 rad, 这样一个圆周就有 2 π 2\pi 2π rad. 比如 sin ⁡ x \sin x sinx 函数就是把角度(rad)的正弦值按照rad展开得到的曲线.

  2. 极限。一个函数在某点的极限存在 等价于 函数在该点的左极限和右极限均存在且相等,即 lim ⁡ x → a − f ( x ) = lim ⁡ x → a + f ( x ) = L \lim_{x\rightarrow a^-} f(x)=\lim_{x\rightarrow a^+} f(x)=L limxaf(x)=limxa+f(x)=L。 显然 f ( x ) 1 / x f(x)1/x f(x)1/x x → 0 x\rightarrow 0 x0 处极限不存在。
    注意

    – 最终得到的 L L L 一定是与 x x x无关的。
    L = ± ∞ L=\pm\infty L=± 也是可以的,比如 f ( x ) = 1 / x 2 f(x)=1/{x^2} f(x)=1/x2 x → 0 x\rightarrow 0 x0 处极限为 + ∞ +\infty +
    x → ± ∞ x\rightarrow \pm\infty x± 处的极限严格的定义是 ∀ ϵ > 0 \forall \epsilon>0 ϵ>0, ∃   X \exist~X  X, s.t. for x 0 , x 1 > X x_0,x_1>X x0,x1>X, f ( x 0 ) − f ( x 1 ) < ϵ f(x_0)-f(x_1)<\epsilon f(x0)f(x1)<ϵ. 即有一个渐近线。
    – 注意 f ( x ) = sin ⁡ x f(x)=\sin x f(x)=sinx x → ± ∞ x\rightarrow \pm\infty x± 处就没有极限,因为他再不停震荡。而 f ( x ) = sin ⁡ ( 1 / x ) f(x)=\sin (1/x) f(x)=sin(1/x) 随着 x → 0 x\rightarrow 0 x0 也在不停的震荡。
    – 一个很有趣的现象是, x → ± ∞ x\rightarrow \pm\infty x±的过程在坐标轴上可以画到无穷远, x → 0 x \rightarrow 0 x0 在坐标轴上仅占据了很小的区间。但是,这两个区域却存在一 一对应关系, 比如对于每一个 x → + ∞ x\rightarrow +\infty x+,总能找到一个 1 / x → 0 1/x\rightarrow 0 1/x0. 其实这也就说明了坐标上任何一点都能无限被放大。这就是无穷小的威力。

  3. 连续。判断一个函数是否连续先要看定义域,主要讨论的是他在定义域上是否连续。在一个点上,若 lim ⁡ x → a f ( x ) = f ( a ) \lim_{x\rightarrow a}f(x)=f(a) limxaf(x)=f(a), 则该点上连续。在区间上每一点都连续就可以(闭区间时仅仅要求一侧极限即可)。但是注意到, f ( x ) = 1 / x 2 f(x)=1/{x^2} f(x)=1/x2 仍然被认为在 0 处是不连续的。虽然它在 0 处的极限存在,只不过是正无穷 (可能正无穷就不是一个数而是一个表达).

  4. 导数。我们认为一个函数 y = f ( x ) y=f(x) y=f(x) 的导数是 d y / d x dy/dx dy/dx, 即 ( x x x一个小小的增量引起的 y y y的增量) / (这个小小的增量)。显然这个导数在函数的每一点都是不一样的,我们对一个函数 ( y = x 2 y=x^2 y=x2) 求导得到的导函数 ( y ′ = 2 x y'=2x y=2x) 即可以反应在一个点 x 0 x_0 x0处的导数值。
    – 导数也存在左导数 lim ⁡ h → 0 − f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^-}\frac{f(x_0+h)-f(x_0)}{h} limh0hf(x0+h)f(x0) 和右导数 lim ⁡ h → 0 + f ( x 0 + h ) − f ( x 0 ) h \lim_{h\rightarrow 0^+}\frac{f(x_0+h)-f(x_0)}{h} limh0+hf(x0+h)f(x0) 的区别。若某点左导数右导数存在且相等,则该点导数存在,典型的反例是 x → 0 x\rightarrow 0 x0 时的 y = ∣ x ∣ y=|x| y=x.
    – 可导必定连续,连续不一定可导。 魏尔斯特拉斯函数处处连续但不可导.
    – 导数的求解可以根据基本求导法则来, 也可以根据定义来,比如求 sin ⁡ x \sin x sinx 的导数
    lim ⁡ h → 0 sin ⁡ ( x + h ) − sin ⁡ x h = lim ⁡ h → 0 2 sin ⁡ ( h 2 ) cos ⁡ ( h 2 + x ) h = cos ⁡ x \lim_{h\rightarrow 0}\frac{\sin(x+h)-\sin x}{h}=\lim_{h\rightarrow 0}\frac{2\sin(\frac{h}{2})\cos(\frac{h}{2}+x)}{h}=\cos x h0limhsin(x+h)sinx=h0limh2sin(2h)cos(2h+x)=cosx
    – 链式法则的意思是 比如 z = g ( y ) z=g(y) z=g(y), y = f ( x ) y=f(x) y=f(x), 则 d z d x = d z d y d y d x = d g ( y ) d y d f ( x ) d x \frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx} = \frac{dg(y)}{dy}\frac{df(x)}{dx} dxdz=dydzdxdy=dydg(y)dxdf(x), 这可以想象成 x x x 的一点点变化引起了 y y y 的一点点变化, y y y 的一点点变化又引起了 z z z 的变化.

  5. 举例,判断分段函数是否连续是否可导
    f ( x ) = { 1 x ≤ 0 x 2 + 1 x > 0 f(x)= \left\{ \begin{array}{lcl} 1 & & {x\leq 0}\\ x^2+1 & & {x>0} \end{array} \right. f(x)={1x2+1x0x>0

    首先, 我们判断 f ( x ) f(x) f(x) x = 0 x=0 x=0 是连续的, 因为 lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 + f ( x ) = 1 \lim_{x\rightarrow 0^-} f(x) = \lim_{x\rightarrow 0^+} f(x) = 1 limx0f(x)=limx0+f(x)=1. 其次, 我们判断 f ( x ) f(x) f(x) x = 0 x=0 x=0 是可导的, 因为 lim ⁡ h → 0 − f ( 0 + h ) − f ( 0 ) h = lim ⁡ h → 0 + f ( 0 + h ) − f ( 0 ) h = 0 \lim_{h\rightarrow 0^-} \frac{f(0+h)-f(0)}{h} = \lim_{h\rightarrow 0^+} \frac{f(0+h)-f(0)}{h} = 0 limh0hf(0+h)f(0)=limh0+hf(0+h)f(0)=0.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值