考研必备数学公式大全(数学二)(基础回顾篇)

由于公式太多,汇总成一篇容易打不开,所以分三篇。整篇链接:https://blog.csdn.net/zhaohongfei_358/article/details/106039576

章节链接
基础回顾篇https://blog.csdn.net/zhaohongfei_358/article/details/119929920
高等数学篇https://blog.csdn.net/zhaohongfei_358/article/details/119929988
线性代数篇https://blog.csdn.net/zhaohongfei_358/article/details/119930063

基础回顾

面(体)积公式

球 表 面 积 公 式 : S = 4 π R 2 球 体 积 公 式 : V = 4 3 π R 3 圆 锥 体 积 公 式 : V = 1 3 s h       ( s 为 圆 锥 底 面 积 , h 为 圆 锥 的 高 ) 椭 圆 面 积 公 式 : S = π a b 扇 形 面 积 公 式 : S = 1 2 l r = 1 2 r 2 θ       ( 其 中 l 为 弧 长 , r 为 半 径 , θ 为 夹 角 ( 用 π 表 示 ) ) \begin{aligned} & \\ & 球表面积公式:S= 4\pi R^2 \\ \\ & 球体积公式:V = \frac{4}{3}\pi R^3 \\ \\ & 圆锥体积公式:V=\frac{1}{3} sh ~~~~~(s为圆锥底面积,h为圆锥的高) \\\\ & 椭圆面积公式: S=\pi ab \\ \\ & 扇形面积公式: S= \frac{1}{2}l r = \frac{1}{2}r^2\theta ~~~~~(其中l为弧长,r为半径,\theta为夹角(用\pi表示)) \end{aligned} S=4πR2V=34πR3V=31sh     (sh)S=πabS=21lr=21r2θ     lrθ(π)

一元二次方程基础

一 元 二 次 方 程 : a x 2 + b x + c = 0       ( a ≠ 0 ) 根 的 公 式      x 1 , 2 = − b ± b 2 − 4 a c 2 a 韦 达 定 理 : x 1 + x 2 = − b a         x 1 x 2 = c a 判 别 式 : Δ = b 2 − 4 a c    ⟹    { Δ > 0 , 两 个 不 等 实 根 Δ = 0 , 两 个 相 等 实 根 Δ < 0 , 两 个 共 轭 的 复 根 ( 无 实 根 ) 抛 物 线   y = a x 2 + b x + c 的 顶 点 : ( − b 2 a , c − b 2 4 a ) \begin{aligned} & \\ & 一元二次方程:ax^2 + bx + c =0 ~~~~~(a \ne 0) \\ \\ & 根的公式 ~~~~ x_{1,2} = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \\ \\ & 韦达定理: x_1 + x_2 = -\frac{b}{a} ~~~~~~~ x_1 x_2 = \frac{c}{a} \\ \\ & 判别式: \Delta=b^2 - 4ac \implies \begin{cases} \Delta >0,两个不等实根 \\ \Delta =0,两个相等实根 \\ \Delta <0,两个共轭的复根(无实根) \\ \end{cases} \\\\ & 抛物线~ y=ax^2 + bx + c 的顶点:(-\frac{b}{2a}, c-\frac{b^2}{4a}) \end{aligned} ax2+bx+c=0     (a=0)    x1,2=2ab±b24ac x1+x2=ab       x1x2=acΔ=b24acΔ>0Δ=0Δ<0线 y=ax2+bx+c(2ab,c4ab2)

极坐标方程与直角坐标转换

直 角 坐 标 化 极 坐 标 { x = ρ cos ⁡ θ y = ρ sin ⁡ θ    ⟹    x 2 + y 2 = ρ 2 极 坐 标 化 直 角 坐 标 : ρ 2 = x 2 + y 2    ⟹    tan ⁡ θ = y x \begin{aligned} &直角坐标化极坐标 \begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \implies x^2+y^2=\rho ^2 \\\\ &极坐标化直角坐标 :\rho ^2 = x^2+y^2 \implies \tan \theta = \frac{y}{x} \\\\ \end{aligned} {x=ρcosθy=ρsinθx2+y2=ρ2ρ2=x2+y2tanθ=xy

切线与法线方程

切 线 方 程 : y − y 0 x − x 0 = f ′ ( x 0 )      , 即 y − y 0 = f ′ ( x 0 ) ( x − x 0 ) 法 线 方 程 : y − y 0 x − x 0 = − 1 f ′ ( x 0 )       , 即 y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) \begin{aligned} & 切线方程: \frac{y - y_0}{x - x_0} = f'(x_0) ~~~~,即 y-y_0 = f'(x_0)(x-x_0) \\ \\ & 法线方程: \frac{y - y_0}{x - x_0} = -\frac{1}{f'(x_0)}~~~~~,即y-y_0 = -\frac{1}{f'(x_0)}(x-x_0) \end{aligned} 线xx0yy0=f(x0)    yy0=f(x0)(xx0)线xx0yy0=f(x0)1     ,yy0=f(x0)1(xx0)

因式分解公式

( a + b ) 2 = a 2 + 2 a b + b 2 ( a − b ) 2 = a 2 − 2 a b + b 2 ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 a c + 2 b c ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 ( a + b ) ( a − b ) = a 2 − b 2 a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + ⋯ + a b n − 2 + b n − 1 ) ( a + b ) n = ∑ k = 0 n C n k a k b n − k = a n + n a n − 1 b + n ( n − 1 ) 2 ! a n − 1 b 2 + ⋯ + n ( n − 1 ) ⋯ ( n − k + 1 ) k ! a n − k b k + ⋯ + n a b n − 1 + b n \begin{aligned} & \\ & (a+b)^2 = a^2 + 2ab+b^2 \\ \\ & (a-b)^2 = a^2 - 2ab + b^2 \\ \\ & (a+b+c)^2 =a^2+b^2+c^2 + 2ab+2ac+2bc \\\\ & (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \\ \\ & (a-b)^3 = a^3 - 3a^2b+3ab^2-b^3 \\ \\ & (a+b)(a-b) = a^2 - b^2 \\ \\ & a^3 + b^3 = (a+b) (a^2 -ab + b^2) \\ \\ & a^3-b^3 = (a-b)(a^2+ab+b^2) \\ \\ & a^n-b^n = (a-b)(a^{n-1} + a^{n-2}b + \cdots + ab^{n-2} + b^{n-1}) \\ \\ & (a+b)^n = \sum_{k=0}^n C_n^ka^kb^{n-k} = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-1}b^2 + \cdots + \frac{n(n-1)\cdots(n-k+1)}{k!}a^{n-k}b^k + \cdots + nab^{n-1} + b^n \end{aligned} (a+b)2=a2+2ab+b2(ab)2=a22ab+b2(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a+b)3=a3+3a2b+3ab2+b3(ab)3=a33a2b+3ab2b3(a+b)(ab)=a2b2a3+b3=(a+b)(a2ab+b2)a3b3=(ab)(a2+ab+b2)anbn=(ab)(an1+an2b++abn2+bn1)(a+b)n=k=0nCnkakbnk=an+nan1b+2!n(n1)an1b2++k!n(n1)(nk+1)ankbk++nabn1+bn

阶乘与双阶乘

n ! = 1 × 2 × 3 × . . . × n       ( 规 定 0 ! = 1 ) ( 2 n ) ! ! = 2 × 4 × 6 × . . . × ( 2 n ) = 2 n ⋅ n ! ( 2 n − 1 ) ! ! = 1 × 3 × 5... × ( 2 n − 1 ) \begin{aligned} & n! = 1\times2\times3\times ... \times n ~~~~~(规定0!=1) \\ \\ & (2n)!! = 2\times4\times6\times ... \times (2n) = 2^n \cdot n! \\ \\ & (2n-1)!! = 1\times3\times5...\times(2n-1) \end{aligned} n!=1×2×3×...×n     (0!=1)(2n)!!=2×4×6×...×(2n)=2nn!(2n1)!!=1×3×5...×(2n1)

函数的奇偶性

定 义 在 [ − a , a ] 上 的 任 一 函 数 , 可 以 表 示 为 一 个 奇 函 数 与 一 个 偶 函 数 之 和 : f ( x ) = 1 2 [ f ( x ) − f ( − x ) ] + 1 2 [ f ( x ) + f ( − x ) ] \begin{aligned} & 定义在[-a,a]上的任一函数,可以表示为一个奇函数与一个偶函数之和: \\ \\ & f(x) = \frac{1}{2}[f(x)-f(-x)] + \frac{1}{2}[f(x) + f(-x)] \end{aligned} [a,a]f(x)=21[f(x)f(x)]+21[f(x)+f(x)]

排列组合

A n m = n ( n − 1 ) ( n − 2 ) ⋯ ( n − m + 1 ) = n ! ( n − m ) ! C n m = A n m m ! = n ( n − 1 ) ⋯ ( n − m + 1 ) m ! = n ! m ! ( n − m ) ! \begin{aligned} A_n^m & = n(n-1)(n-2)\cdots(n-m +1) \\\\ & = \frac{n!}{(n-m)!} \\\\ \\ C_n^m & = \frac{A_n^m}{m!} = \frac{n(n-1)\cdots(n-m + 1)}{m!} \\\\ & = \frac{n!}{m!(n-m)!} \end{aligned} AnmCnm=n(n1)(n2)(nm+1)=(nm)!n!=m!Anm=m!n(n1)(nm+1)=m!(nm)!n!

等差数列

a n = a 1 + ( n − 1 ) d S n = n a 1 + n ( n − 1 ) 2 d          n ∈ N ∗ S n = n ( a 1 + a n ) 2 \begin{aligned} & a_n = a_1 + (n-1)d \\ \\ & S_n = na_1 + \frac{n(n-1)}{2}d ~~~~~~~~ n \in N^* \\ \\ & S_n = \frac{n(a_1+a_n)}{2} \\ \\ \end{aligned} an=a1+(n1)dSn=na1+2n(n1)d        nNSn=2n(a1+an)

等比数列

a n = a 1 ⋅ q n − 1 S n = a 1 ( 1 − q n ) 1 − q        ( q ≠ 1 ) \begin{aligned} & a_n = a_1 \cdot q^{n-1} \\ \\ & S_n = \frac{a_1(1-q^n)}{1-q} ~~~~~~(q\neq 1) \end{aligned} an=a1qn1Sn=1qa1(1qn)      (q=1)

常用数列前n项和

∑ k = 1 n k = 1 + 2 + 3 + ⋯ + n = n ( n + 1 ) 2 ∑ k = 1 n ( 2 k − 1 ) = 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = n 2 ∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 ∑ k = 1 n k 3 = 1 3 + 2 3 + 3 3 + ⋯ + n 3 = [ n ( n + 1 ) 2 ] 2 = ( ∑ k = 1 n k ) 2 ∑ k = 1 n k ( k + 1 ) = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + n ( n + 1 ) = n ( n + 1 ) ( n + 2 ) 3 ∑ k = 1 n 1 k ( k + 1 ) = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + ⋯ + 1 n ( n + 1 ) = n n + 1 \begin{aligned} & \\ & \sum_{k=1}^n k = 1 + 2+3+\cdots + n=\frac{n(n+1)}{2} \\ \\ & \sum_{k=1}^n (2k-1) = 1+ 3 + 5 + \cdots + (2n-1) = n^2 \\ \\ & \sum_{k=1}^n k^2 = 1^2+2^2+3^2+\cdots +n^2 = \frac{n(n+1)(2n+1)}{6} \\ \\ & \sum_{k=1}^n k^3 = 1^3 + 2^3 +3^3 +\cdots + n^3 = [\frac{n(n+1)}{2}]^2 = (\sum_{k=1}^n k)^2 \\ \\ & \sum_{k=1}^n k(k+1) = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1) = \frac{n(n+1)(n+2)}{3} \\\\ & \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1} \end{aligned} k=1nk=1+2+3++n=2n(n+1)k=1n(2k1)=1+3+5++(2n1)=n2k=1nk2=12+22+32++n2=6n(n+1)(2n+1)k=1nk3=13+23+33++n3=[2n(n+1)]2=(k=1nk)2k=1nk(k+1)=1×2+2×3+3×4++n(n+1)=3n(n+1)(n+2)k=1nk(k+1)1=1×21+2×31+3×41++n(n+1)1=n+1n

不等式

2 ∣ a b ∣ ≤ a 2 + b 2 ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ∣ a 1 ± a 2 ± ⋅ ⋅ ⋅ ⋅ ± a n ∣ ≤ ∣ a 1 ∣ + ∣ a 2 ∣ + ⋅ ⋅ ⋅ + ∣ a n ∣ ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x       ( a < b ) a b ≤ a + b 2 ≤ a 2 + b 2 2       ( a , b > 0 ) a b c 3 ≤ a + b + c 3 ≤ a 2 + b 2 + c 2 3       ( a , b , c > 0 ) a 1 a 2 ⋅ ⋅ ⋅ a n n ≤ a 1 + a 2 + . . . + a n n ≤ a 1 2 + a 2 2 + . . . + a n 2 n      ( a 1 , a 2 , . . . a n > 0 , 等 号 当 且 仅 当 a 1 = a 2 = . . . = a n 时 成 立 ) x y ≤ x p p + x q q       ( x , y , p , q > 0 , 1 p + 1 q = 1 ) ( a c + b d ) 2 ≤ ( a 2 + b 2 ) ( c 2 + d 2 ) ( a 1 b 1 + a 2 b 2 + a 3 b 3 ) 2 ≤ ( a 1 2 + a 2 2 + a 3 2 ) ( b 1 2 + b 2 2 + b 3 2 ) [ ∫ a b f ( x ) ⋅ g ( x ) d x ] 2 ≤ ∫ a b f 2 ( x ) d x ⋅ ∫ a b g 2 ( x ) d x sin ⁡ x < x < tan ⁡ x       ( 0 < x < π 2 ) arctan ⁡ x ≤ x ≤ arcsin ⁡ x       ( 0 ≤ x ≤ 1 ) x + 1 ≤ e x ln ⁡ x ≤ x − 1 1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x       ( x > 0 ) \begin{aligned} & \\ & 2 |ab| \le a ^ 2 + b^2 \\ \\ & |a \pm b| \le |a| + |b| \\ \\ & | |a| - |b| | \le |a-b| \\ \\ & |a_1 \pm a_2 \pm \cdot\cdot\cdot\cdot \pm a_n| \le |a_1| + |a_2| + \cdot\cdot\cdot + |a_n| \\ \\ & |\int_a^b f(x) dx| \le \int_a^b |f(x)| dx ~~~~~(a<b) \\ \\ & \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}} ~~~~~(a,b>0) \\ \\ & \sqrt[3]{abc} \le \frac{a+b+c}{3} \le \sqrt{\frac{a^2+b^2+c^2}{3}} ~~~~~(a,b,c>0) \\ \\ & \sqrt[n]{a_1a_2\cdot\cdot\cdot a_n} \le \frac{a_1+a_2+...+a_n}{n} \le \sqrt{\frac{{a_1}^2+{a_2}^2 + ... + {a_n}^2}{n}} ~~~~(a_1,a_2,...a_n > 0,等号当且仅当 a_1 = a_2 = ... = a_n时成立) \\ \\ & xy \le \frac{x^p}{p} + \frac{x^q}{q} ~~~~~(x,y,p,q>0, \frac{1}{p}+\frac{1}{q}=1) \\ \\ & (ac+bd)^2 \le (a^2+b^2)(c^2+d^2) \\ \\ & (a_1 b_1 + a_2 b_2 + a_3 b_3)^2 \le ({a_1}^2 + {a_2}^2 + {a_3}^2)({b_1}^2 + {b_2}^2 + {b_3}^2) \\ \\ & [\int_a^b f(x)\cdot g(x) dx]^2 \le \int_a^bf^2(x)dx \cdot\int_a^bg^2(x)dx \\ \\ & \sin x < x < \tan x ~~~~~(0<x<\frac{\pi}{2}) \\ \\ & \arctan x \le x \le \arcsin x ~~~~~(0\le x \le 1) \\ \\ & x+1 \le e^x \\ \\ & \ln x \le x-1 \\ \\ & \frac{1}{1+x} < \ln (1+\frac{1}{x}) < \frac{1}{x} ~~~~~(x>0) \end{aligned} 2aba2+b2a±ba+bababa1±a2±±ana1+a2++anabf(x)dxabf(x)dx     (a<b)ab 2a+b2a2+b2      (a,b>0)3abc 3a+b+c3a2+b2+c2      (a,b,c>0)na1a2an na1+a2+...+anna12+a22+...+an2     a1,a2,...an>0a1=a2=...=anxypxp+qxq     (x,y,p,q>0,p1+q1=1)(ac+bd)2(a2+b2)(c2+d2)(a1b1+a2b2+a3b3)2(a12+a22+a32)(b12+b22+b32)[abf(x)g(x)dx]2abf2(x)dxabg2(x)dxsinx<x<tanx     (0<x<2π)arctanxxarcsinx     (0x1)x+1exlnxx11+x1<ln(1+x1)<x1     (x>0)

三角函数公式

诱导公式

sin ⁡ ( − α ) = − sin ⁡ α cos ⁡ ( − α ) = cos ⁡ α sin ⁡ ( π 2 − α ) = cos ⁡ α cos ⁡ ( π 2 − α ) = sin ⁡ α sin ⁡ ( π 2 + α ) = cos ⁡ α cos ⁡ ( π 2 + α ) = − sin ⁡ α sin ⁡ ( π − α ) = sin ⁡ α cos ⁡ ( π − α ) = − cos ⁡ α sin ⁡ ( π + α ) = − sin ⁡ α cos ⁡ ( π + α ) = − cos ⁡ α 奇 变 偶 不 变 , 符 号 看 象 限 奇 指    k ⋅ π 2    中 k 看 象 限 是 指 : 将 α 看 成 锐 角 , 然 后 看 sin ⁡ ( 变 之 前 的 , 或 c o s ) ( k ⋅ π 2 ± α ) 的 符 号 \begin{aligned} & \sin (-\alpha) = -\sin \alpha \\ \\ & \cos (-\alpha) = \cos \alpha \\ \\ & \sin (\frac{\pi}{2} - \alpha) = \cos \alpha \\ \\ & \cos (\frac{\pi}{2} - \alpha) = \sin \alpha \\ \\ & \sin (\frac{\pi}{2} + \alpha) = \cos \alpha \\ \\ & \cos (\frac{\pi}{2} + \alpha) = - \sin \alpha \\ \\ & \sin (\pi - \alpha) = \sin \alpha \\ \\ & \cos (\pi - \alpha) = - \cos \alpha \\ \\ & \sin (\pi + \alpha) = - \sin \alpha \\ \\ & \cos (\pi + \alpha) = - \cos \alpha \\ \\ \\ & 奇变偶不变,符号看象限 \\ & 奇指 ~~ k\cdot\frac{\pi}{2} ~~ 中 k \\ & 看象限是指:将 \alpha 看成锐角,然后看 \sin_{_{(变之前的,或cos)}}(k\cdot\frac{\pi}{2} \pm \alpha) 的符号 \end{aligned} sin(α)=sinαcos(α)=cosαsin(2πα)=cosαcos(2πα)=sinαsin(2π+α)=cosαcos(2π+α)=sinαsin(πα)=sinαcos(πα)=cosαsin(π+α)=sinαcos(π+α)=cosα  k2π  kαsin(cos)(k2π±α)

平方关系

1 + tan ⁡ 2 α = sec ⁡ 2 α 1 + cot ⁡ 2 α = csc ⁡ 2 α sin ⁡ 2 α + cos ⁡ 2 α = 1 \begin{aligned} & \\ & 1 + \tan ^2 \alpha = \sec^2 \alpha \\ \\ & 1 + \cot^2 \alpha = \csc ^2 \alpha \\ \\ & \sin^2 \alpha + \cos ^2 \alpha = 1 \end{aligned} 1+tan2α=sec2α1+cot2α=csc2αsin2α+cos2α=1

两角和与差的三角函数

sin ⁡ ( α + β ) = sin ⁡ α cos ⁡ β + cos ⁡ α sin ⁡ β cos ⁡ ( α + β ) = cos ⁡ α cos ⁡ β − sin ⁡ α sin ⁡ β sin ⁡ ( α − β ) = sin ⁡ α cos ⁡ β − cos ⁡ α sin ⁡ β cos ⁡ ( α − β ) = cos ⁡ α cos ⁡ β + sin ⁡ α sin ⁡ β tan ⁡ ( α + β ) = tan ⁡ α + tan ⁡ β 1 − tan ⁡ α tan ⁡ β tan ⁡ ( α − β ) = tan ⁡ α − tan ⁡ β 1 + tan ⁡ α tan ⁡ β \begin{aligned} & \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \\ \\ & \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \\ \\ & \sin (\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \\ & \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \\ & \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{ 1- \tan \alpha \tan \beta} \\ \\ & \tan (\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1+ \tan \alpha \tan \beta} \end{aligned} sin(α+β)=sinαcosβ+cosαsinβcos(α+β)=cosαcosβsinαsinβsin(αβ)=sinαcosβcosαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=1tanαtanβtanα+tanβtan(αβ)=1+tanαtanβtanαtanβ

积化和差公式

cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + c o s ( α − β ) ] cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] sin ⁡ α sin ⁡ β = − 1 2 [ cos ⁡ ( α + β ) − cos ⁡ ( α − β ) ] \begin{aligned} & \cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha + \beta) + cos (\alpha - \beta)] \\ \\ & \cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin (\alpha - \beta)] \\ \\ & \sin \alpha \cos \beta = \frac {1}{2} [\sin (\alpha + \beta) + \sin (\alpha - \beta)] \\ \\ & \sin \alpha \sin \beta = - \frac{1}{2} [\cos (\alpha + \beta) - \cos (\alpha - \beta)] \end{aligned} cosαcosβ=21[cos(α+β)+cos(αβ)]cosαsinβ=21[sin(α+β)sin(αβ)]sinαcosβ=21[sin(α+β)+sin(αβ)]sinαsinβ=21[cos(α+β)cos(αβ)]
记忆口诀:
积化和差得和差,余弦在后要想加。异名函数取正弦,正弦相乘取负号。

和差化积公式

sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \begin{aligned} & \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2} \\ \\ & \sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2} \\ \\ & \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \\ & \cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2} \end{aligned} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβ
记忆口诀:
正加正,正在前,正减正,余在前;余加余,余并肩;余减余,负正弦

倍角公式

sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 1 − 2 sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α sin ⁡ 2 α = 1 − cos ⁡ 2 α 2 cos ⁡ 2 α = 1 + cos ⁡ 2 α 2 tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α \begin{aligned} & \sin 2\alpha = 2\sin \alpha \cos \alpha \\ \\ & \cos 2\alpha = \cos ^2 \alpha - \sin ^2 \alpha = 1- 2\sin^2 \alpha = 2 \cos^2\alpha -1 \\ \\ & \sin 3\alpha = -4 \sin^3 \alpha + 3\sin \alpha \\ \\ & \cos 3 \alpha = 4\cos^3\alpha -3 \cos \alpha \\ \\ & \sin^2 \alpha = \frac{1-\cos 2\alpha}{2} \\ \\ & \cos^2 \alpha = \frac{1+\cos 2\alpha}{2} \\ \\ & \tan 2\alpha = \frac{2\tan \alpha}{1-\tan ^2\alpha} \\ \\ & \cot 2\alpha = \frac{\cot ^2 \alpha -1}{2\cot \alpha} \end{aligned} sin2α=2sinαcosαcos2α=cos2αsin2α=12sin2α=2cos2α1sin3α=4sin3α+3sinαcos3α=4cos3α3cosαsin2α=21cos2αcos2α=21+cos2αtan2α=1tan2α2tanαcot2α=2cotαcot2α1

半角公式

sin ⁡ 2 α 2 = 1 − cos ⁡ α 2 cos ⁡ 2 α 2 = 1 + cos ⁡ α 2 sin ⁡ α 2 = ± 1 − cos ⁡ α 2 cos ⁡ α 2 = ± 1 + cos ⁡ α 2 tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α cot ⁡ α 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \begin{aligned} & \sin^2 \frac{\alpha}{2} = \frac{1- \cos \alpha}{2} \\ \\ & \cos^2 \frac{\alpha}{2} = \frac{1+\cos \alpha}{2} \\ \\ & \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1- \cos \alpha}{2}} \\ \\ & \cos \frac{\alpha}{2} = \pm \sqrt{\frac{1+ \cos \alpha}{2}} \\ \\ & \tan \frac{\alpha}{2} = \frac{1- \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1+\cos \alpha} = \pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \\ \\ & \cot \frac{\alpha}{2} = \frac{\sin \alpha}{1- \cos \alpha} = \frac{1+\cos \alpha}{\sin \alpha} = \pm \sqrt{\frac{1+\cos \alpha}{1-\cos \alpha}} \end{aligned} sin22α=21cosαcos22α=21+cosαsin2α=±21cosα cos2α=±21+cosα tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

万能公式

sin ⁡ α = 2 tan ⁡ α 2 1 + tan ⁡ 2 α 2 cos ⁡ α = 1 − tan ⁡ 2 α 2 1 + tan ⁡ 2 α 2 \begin{aligned} & \sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1+\tan^2 \frac{\alpha}{2}} \\ \\ & \cos \alpha = \frac{1- \tan^2 \frac{\alpha}{2}}{1+ \tan^2 \frac{\alpha}{2}} \end{aligned} sinα=1+tan22α2tan2αcosα=1+tan22α1tan22α

其他公式

1 + sin ⁡ α = ( sin ⁡ α 2 + cos ⁡ α 2 ) 2 1 − sin ⁡ α = ( sin ⁡ α 2 − cos ⁡ α 2 ) 2 \begin{aligned} & 1 + \sin \alpha = (\sin \frac{\alpha}{2} + \cos \frac{\alpha}{2}) ^2 \\ \\ & 1 - \sin \alpha = (\sin \frac{\alpha}{2} - \cos \frac{\alpha}{2}) ^2 \end{aligned} 1+sinα=(sin2α+cos2α)21sinα=(sin2αcos2α)2

反三角函数恒等式

arcsin ⁡ x + arccos ⁡ x = π 2 arctan ⁡ x + a r c c o t   x = π 2 sin ⁡ ( arccos ⁡ x ) = 1 − x 2 cos ⁡ ( arcsin ⁡ x ) = 1 − x 2 sin ⁡ ( arcsin ⁡ x ) = x arcsin ⁡ ( sin ⁡ x ) = x cos ⁡ ( arccos ⁡ x ) = x arccos ⁡ ( cos ⁡ x ) = x arccos ⁡ ( − x ) = π − arccos ⁡ x \begin{aligned} & \arcsin x + \arccos x = \frac{\pi}{2} \\ \\ & \arctan x + arccot ~x= \frac{\pi}{2} \\ \\ & \sin(\arccos x) = \sqrt{1-x^2} \\ \\ & \cos(\arcsin x) = \sqrt{1- x^2} \\ \\ & \sin(\arcsin x) = x \\ \\ & \arcsin (\sin x) = x \\ \\ & \cos (\arccos x) = x \\ \\ & \arccos (\cos x) =x \\ \\ & \arccos (-x) = \pi - \arccos x \end{aligned} arcsinx+arccosx=2πarctanx+arccot x=2πsin(arccosx)=1x2 cos(arcsinx)=1x2 sin(arcsinx)=xarcsin(sinx)=xcos(arccosx)=xarccos(cosx)=xarccos(x)=πarccosx

对数相关公式

log ⁡ a ( 1 ) = 0 log ⁡ a ( a ) = 1 log ⁡ a b ∗ log ⁡ b a = 1 − log ⁡ c a b = log ⁡ c b a log ⁡ a ( M N ) = log ⁡ a M + log ⁡ a N log ⁡ a ( M N ) = log ⁡ a M − log ⁡ a N log ⁡ a M n = n log ⁡ a M a log ⁡ a b = b log ⁡ a n b m = m n log ⁡ a b = ln ⁡ ( b m ) ln ⁡ ( a n ) \begin{aligned} & \log_a{(1)}=0 \\\\ & \log_a(a)=1\\\\ & \log_a b * \log_ba =1\\\\ &-\log_c{\frac{a}{b}} = \log_c{\frac{b}{a}}\\\\ & \log_a{(MN)} = \log_aM+\log_aN \\\\ & \log_a{(\frac{M}{N})} = \log_a{M}-\log_aN \\\\ & \log_aM^n = n\log_aM \\\\ & a^{\log_ab} = b \\\\ & \log_{a^n}{b^m} = \frac{m}{n} \log_ab = \frac{\ln (b^m)}{\ln(a^n)} \\\\ \end{aligned} loga(1)=0loga(a)=1logablogba=1logcba=logcabloga(MN)=logaM+logaNloga(NM)=logaMlogaNlogaMn=nlogaMalogab=bloganbm=nmlogab=ln(an)ln(bm)

  • 29
    点赞
  • 129
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值