SPSS Modeler KNN分类器(第十七章)

本文介绍了KNN分类器算法,包括最小距离分类法、最近邻方法和K近邻算法的原理和优缺点。在实践中,通过SPSS Modeler的KNN节点进行分类预测和最近邻识别,详细阐述了各个选项卡的设置和结果分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

分类器算法:
积极学习方法:eager learner,是先用数据进行模型训练再进行打分的方法。如前面学到的线性回归和Logistic分析,都是通过训练数据集得到分类模型,再利用训练后的模型对新的测试数据进行打分。

懒惰学习方法:lazy learner,是先不进行数据建模,直接输入测试数据进行的方法。如KNN分类器。

今天,小编就和大家一起来学习认识KNN分类器算法。

1. KNN原理

回顾K-means聚类算法,通过距离来判断样本距离哪个类别中心点更近,从而判断样本数据哪个类。
与聚类算法不同的是,分类算法已经有了每个样本的类别,所以,我们可以把距离进行划分类的思想带入到分类算法中。

1.1 最小距离分类法

过程: 使用测试样本与类别中所有样本点中心的距离作为分类标准。当有一个新的样本时,只需判断该样本距离哪个中心更近,就将该样本划分到哪个类别中。
缺点: 中心点是该类别所有样本的中心,有时不能很好地反映出每个类别的特征空间范围,因此经常会造成误判。

1.2 最近邻方法

过程: 使用与测试样本距离最近的样本类别作为最终的分类类别。即计算测试样本与其他训练样本的距离,并从中找到距

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值