Problem Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End
Sample Output
Case 1:
6
33
59
代码:
#include<bits/stdc++.h>
using namespace std;
int n,tree[50005];
int lowbit(int x)
{
return x&(-x);
}
void updata(int i,int k)
{
while(i<=n)
{
tree[i]+=k;
i+=lowbit(i);
}
}
int query(int i)
{
int res=0;
while(i>0)
{
res+=tree[i];
i-=lowbit(i);
}
return res;
}
int main()
{
int t;
cin>>t;
for(int f=1;f<=t;f++){
memset(tree,0,sizeof(tree));
cout<<"Case "<<f<<":"<<endl;
cin>>n;
for(int i=1;i<=n;i++){
int k;
cin>>k;
//将初始的人数在数组中进行修改
updata(i,k);
}
string s;
while(cin>>s)
{
if(s=="End") break;
int x,y;
cin>>x>>y;
if(s=="Query"){
//求的是x到y这个区间的总人数,所以对应的区间应该是(x-1)到y,这样才不会漏掉队伍x
cout<<query(y)-query(x-1)<<endl;
}
else if(s=="Add"){
updata(x,y);
}
else if(s=="Sub"){
//减少y相当于增加-y
updata(x,-y);
}
}
}
return 0;
}
}
总结:
树状数组是用来解决区间问题的重要方法,将数据通过树的形式保存和修改
需要注意的是,树状数组每一次的修改都需要修改一大块区间,而不是单单修改一个值
核心函数:
int lowbit(int x)//用于更改下标
{
return x&(-x);
}
void updata(int i,int k)//用于更新各个下标的值
{
while(i<=n)
{
tree[i]+=k;
i+=lowbit(i);
}
}
int query(int i)//用于求区间和
{
int res=0;
while(i>0)
{
res+=tree[i];
i-=lowbit(i);
}
return res;
}