AcWing 288. 休息时间

5 篇文章 0 订阅
这篇博客探讨了一个关于牛在N小时内休息B次,如何最大化体力恢复的问题。作者通过动态规划的方法,分别考虑牛不能跨天和能跨天休息的情况,求解了最大体力回复值。在不能跨天的情况下,初始状态 dp[1][1][1] 设为0,然后迭代更新dp数组。当允许跨天休息时,dp[1][1][1]改为1,再次进行动态规划计算。最终,取两次计算的最大值作为答案。
摘要由CSDN通过智能技术生成

传送门

思路:

考虑DP,设dp[i][j][1]为牛在前小时休息j个小时且第i个小时休息时,回复的最多体力;dp[i][j][0]为牛在前小时休息j个小时且第i个小时没有休息时,回复的最多体力。

可以把问题分为两部分,首先考虑当牛不能跨天休息时,在第一个小时休息必然无法恢复体力,有dp[1][1][1]=0,dp[i][0][0]=0,其他皆初始为-inf。于是有dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]),dp[i][j][1]=max(dp[i-1][j-1][0],dp[i-1][j-1][1]+U[i])。

最后答案为max(dp[N][B][0],dp[N][B][1])

那么现在可以跨天休息,说明在第一个小时休息时,若第N个小时也休息了,就恢复体力,所以把刚才dp的初始值中dp[1][1][1]改为1,其余不变,再求一次dp,记录dp[N][B][1]为第二次dp的答案。

两次dp的答案取max就是最终的答案了。

[代码:

#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 4000;
const double eps = 1e-6;
const LL MOD = 998244353;

int N, B;
int U[maxn];
int dp[2][maxn][2];

void solve()
{
	memset(dp, -inf, sizeof(dp));
	dp[1][0][0] = dp[1][1][1] = 0;
	for (int i = 2; i <= N; i++)
	{
		dp[i & 1][0][0] = 0;
		for (int j = 1; j <= B; j++)
		{
			dp[i & 1][j][0] = max(dp[(i - 1) & 1][j][0], dp[(i - 1) & 1][j][1]);
			dp[i & 1][j][1] = max(dp[(i - 1) & 1][j - 1][0], dp[(i - 1) & 1][j - 1][1] + U[i]);
		}
	}
	int ans = max(dp[N & 1][B][0], dp[N & 1][B][1]);
	memset(dp, -inf, sizeof(dp));
	dp[1][1][1] = U[1], dp[1][0][0] = 0;
	for (int i = 2; i <= N; i++)
	{
		dp[i & 1][0][0] = 0;
		for (int j = 1; j <= B; j++)
		{
			dp[i & 1][j][0] = max(dp[(i - 1) & 1][j][0], dp[(i - 1) & 1][j][1]);
			dp[i & 1][j][1] = max(dp[(i - 1) & 1][j - 1][0], dp[(i - 1) & 1][j - 1][1] + U[i]);
		}
	}
	ans = max(ans, dp[N & 1][B][1]);
	cout << ans << endl;
}

int main()
{
	IOS;
	cin >> N >> B;
	for (int i = 1; i <= N; i++)
		cin >> U[i];
	solve();

	return 0;
}

题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整数 $n$ 和 $m$。 第二行包含 $n$ 个整数,其中第 $i$ 个整数表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整数 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整数 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 数据范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度数 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度数从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度数从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值