思路:
考虑DP,设dp[i][j][1]为牛在前小时休息j个小时且第i个小时休息时,回复的最多体力;dp[i][j][0]为牛在前小时休息j个小时且第i个小时没有休息时,回复的最多体力。
可以把问题分为两部分,首先考虑当牛不能跨天休息时,在第一个小时休息必然无法恢复体力,有dp[1][1][1]=0,dp[i][0][0]=0,其他皆初始为-inf。于是有dp[i][j][0]=max(dp[i-1][j][0],dp[i-1][j][1]),dp[i][j][1]=max(dp[i-1][j-1][0],dp[i-1][j-1][1]+U[i])。
最后答案为max(dp[N][B][0],dp[N][B][1])
那么现在可以跨天休息,说明在第一个小时休息时,若第N个小时也休息了,就恢复体力,所以把刚才dp的初始值中dp[1][1][1]改为1,其余不变,再求一次dp,记录dp[N][B][1]为第二次dp的答案。
两次dp的答案取max就是最终的答案了。
[代码:
#include<bits/stdc++.h>
#include<unordered_map>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
//#define int LL
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#pragma warning(disable :4996)
const int maxn = 4000;
const double eps = 1e-6;
const LL MOD = 998244353;
int N, B;
int U[maxn];
int dp[2][maxn][2];
void solve()
{
memset(dp, -inf, sizeof(dp));
dp[1][0][0] = dp[1][1][1] = 0;
for (int i = 2; i <= N; i++)
{
dp[i & 1][0][0] = 0;
for (int j = 1; j <= B; j++)
{
dp[i & 1][j][0] = max(dp[(i - 1) & 1][j][0], dp[(i - 1) & 1][j][1]);
dp[i & 1][j][1] = max(dp[(i - 1) & 1][j - 1][0], dp[(i - 1) & 1][j - 1][1] + U[i]);
}
}
int ans = max(dp[N & 1][B][0], dp[N & 1][B][1]);
memset(dp, -inf, sizeof(dp));
dp[1][1][1] = U[1], dp[1][0][0] = 0;
for (int i = 2; i <= N; i++)
{
dp[i & 1][0][0] = 0;
for (int j = 1; j <= B; j++)
{
dp[i & 1][j][0] = max(dp[(i - 1) & 1][j][0], dp[(i - 1) & 1][j][1]);
dp[i & 1][j][1] = max(dp[(i - 1) & 1][j - 1][0], dp[(i - 1) & 1][j - 1][1] + U[i]);
}
}
ans = max(ans, dp[N & 1][B][1]);
cout << ans << endl;
}
int main()
{
IOS;
cin >> N >> B;
for (int i = 1; i <= N; i++)
cin >> U[i];
solve();
return 0;
}