一、显示各层
# params显示:layer名,w,b for layer_name, param in net.params.items(): print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape) # blob显示:layer名,输出的blob维度 for layer_name, blob in net.blobs.items(): print layer_name + '\t' + str(blob.data.shape)
二、自定义函数:参数/卷积结果可视化
import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg import caffe %matplotlib inline plt.rcParams['figure.figsize'] = (8, 8) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' def show_data(data, padsize=1, padval=0): """Take an array of shape (n, height, width) or (n, height, width, 3) and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)""" # data归一化 data -= data.min() data /= data.max() # 根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n n = int(np.ceil(np.sqrt(data.shape[0]))) # padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # 先将padding后的data分成n*n张图像 data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) # 再将(n, W, n, H)变换成(n*w, n*H) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) plt.figure() plt.imshow(data,cmap='gray') plt.axis('off') # 示例:显示第一个卷积层的输出数据和权值(filter) print net.blobs['conv1'].data[0].shape show_data(net.blobs['conv1'].data[0]) print net.params['conv1'][0].data.shape show_data(net.params['conv1'][0].data.reshape(32*3,5,5))
三、训练过程Loss&Accuracy可视化
import matplotlib.pyplot as plt import caffe caffe.set_device(0) caffe.set_mode_gpu() # 使用SGDSolver,即随机梯度下降算法 solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt') # 等价于solver文件中的max_iter,即最大解算次数 niter = 10000 # 每隔100次收集一次loss数据 display= 100 # 每次测试进行100次解算 test_iter = 100 # 每500次训练进行一次测试 test_interval =500 #初始化 train_loss = zeros(ceil(niter * 1.0 / display)) test_loss = zeros(ceil(niter * 1.0 / test_interval)) test_acc = zeros(ceil(niter * 1.0 / test_interval)) # 辅助变量 _train_loss = 0; _test_loss = 0; _accuracy = 0 # 进行解算 for it in range(niter): # 进行一次解算 solver.step(1) # 统计train loss _train_loss += solver.net.blobs['SoftmaxWithLoss1'].data if it % display == 0: # 计算平均train loss train_loss[it // display] = _train_loss / display _train_loss = 0 if it % test_interval == 0: for test_it in range(test_iter): # 进行一次测试 solver.test_nets[0].forward() # 计算test loss _test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data # 计算test accuracy _accuracy += solver.test_nets[0].blobs['Accuracy1'].data # 计算平均test loss test_loss[it / test_interval] = _test_loss / test_iter # 计算平均test accuracy test_acc[it / test_interval] = _accuracy / test_iter _test_loss = 0 _accuracy = 0 # 绘制train loss、test loss和accuracy曲线 print '\nplot the train loss and test accuracy\n' _, ax1 = plt.subplots() ax2 = ax1.twinx() # train loss -> 绿色 ax1.plot(display * arange(len(train_loss)), train_loss, 'g') # test loss -> 黄色 ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y') # test accuracy -> 红色 ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r') ax1.set_xlabel('iteration') ax1.set_ylabel('loss') ax2.set_ylabel('accuracy') plt.show()