【python】示例:模拟冶金炉中的温度分布变化

1、代码概述

这段代码主要模拟了一个一维热传导过程在冶金炉中的温度分布变化。具体地,它使用了有限差分法(Finite Difference Method, FDM)来求解一维热传导方程。代码包含参数设置、初始温度分布设置、有限差分法求解、冶金过程模拟、产量估算、性能评估以及温度分布图的绘制等功能。
1、初始温度分布
代码初始化了一个长度为Nx的数组T,表示温度分布。数组的所有元素都被设置为T_initial,除了第一个元素(左边界)和最后一个元素(右边界),它们分别被设置为T_boundary中的对应值。
2、有限差分法求解
heat_conduction_fdm函数使用有限差分法来更新温度分布。在每个时间步,它根据当前温度分布和边界条件计算出下一个时间步的温度分布。
3、冶金过程模拟
simulate_metallurgy_process函数模拟了整个冶金过程中的温度分布变化。它使用给定的初始温度、边界条件和热扩散系数,通过调用heat_conduction_fdm函数来迭代更新温度分布。
4、产量估算
estimate_production函数根据模拟结束后的温度分布的标准差来估算产量。它接受一个产量因子production_factor作为参数,将标准差转换为产量的比例因子。
5、性能评估
evaluate_process函数用于评估冶金过程的性能。它通过调用simulate_metallurgy_process函数来获取模拟结束后的温度分布,并计算温度分布的标准差(忽略边界点)。标准差越小,表示温度分布越均匀。
绘图函数
6、plot_temperature_distribution函数用于绘制温度分布图。它接受一个温度分布数组和一个可选的标题字符串作为输入,并使用matplotlib.pyplot库来绘制曲线图。
 

2、代码示例

import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt

# 参数设置
L = 10.0  # 冶炼炉长度(单位:米)
Nx = 100  # 网格点数
dx = L / (Nx - 1)  # 空间步长

time_steps = 1000  # 模拟的总时间步数
alpha = 0.01  # 热扩散系数(单位:m^2/s)
T_initial = 1500  # 初始温度(单位:K)
T_boundary = (1800, 1200)  # 边界温度(单位:K)


# 初始温度分布(假设为均匀分布)
T = np.ones(Nx) * T_initial
T[0] = T_boundary[0]  # 左边界温度
T[-1] = T_boundary[1]  # 右边界温度



# 有限差分法求解一维热传导方程
def heat_conduction_fdm(T, alpha,dt,dx_squared, boundary_conditions):
    """
    使用有限差分法求解一维热传导方程
    :param T: 当前温度分布
    :param alpha: 热扩散系数
    :param boundary_conditions: 边界温度条件(左边界,右边界)
    :return: 下一个时间步的温度分布
    """
    T_new = T.copy()  # 直接复制T,避免在原始数组上操作
    diffusion_factor = alpha * dt / dx_squared
    # 矢量化操作更新内部网格点
    T_new[1:-1] = T[1:-1] + diffusion_factor * (T[2:] - 2 * T[1:-1] + T[:-2])

    # 应用边界条件
    T_new[0] = boundary_conditions[0]
    T_new[-1] = boundary_conditions[1]

    return T_new

# 冶金过程模拟
def simulate_metallurgy_process(alpha, initial_temperature, boundary_conditions):
    """
    模拟冶金过程中的温度分布
    :param alpha: 热扩散系数
    :param initial_temperature: 初始温度
    :param boundary_conditions: 边界温度条件
    :return: 模拟结束后的温度分布
    """
    T = np.ones(Nx) * initial_temperature
    T[0] = boundary_conditions[0]
    T[-1] = boundary_conditions[1]
    dt = 0.01  # 时间步长
    dx_squared = dx ** 2

    for _ in range(time_steps):
        T = heat_conduction_fdm(T, alpha,dt,dx_squared, boundary_conditions)

    return T

# 评估函数(用于优化)
def evaluate_process(alpha):
    """
    评估冶金过程的性能,这里简化为温度分布的标准差
    标准差越小,表示温度分布越均匀,可能有助于提升产品质量
    :param alpha: 热扩散系数
    :return: 温度分布的标准差
    """
    T = simulate_metallurgy_process(alpha, T_initial, T_boundary)
    return np.std(T[1:-1])  # 忽略边界点,只考虑炉膛内部的温度分布

# 绘图函数
def plot_temperature_distribution(T, title='Temperature Distribution after Simulation'):
    """
    绘制温度分布图
    :param T: 温度分布
    :param title: 图表标题
    """
    x = np.linspace(0, L, Nx)  # 创建x轴坐标,对应网格点位置
    plt.plot(x, T, label='Temperature (K)')  # 绘制温度分布曲线
    plt.title(title)  # 设置图表标题
    plt.xlabel('Position along furnace (m)')  # 设置x轴标签
    plt.ylabel('Temperature (K)')  # 设置y轴标签
    plt.grid(True)  # 添加网格线
    plt.legend()  # 显示图例
    plt.show()  # 显示图表

# 假设的产量估算函数
def estimate_production(temperature_distribution, production_factor):
    """
    基于温度分布的标准差来估算产量
    :param temperature_distribution: 温度分布
    :param production_factor: 产量因子,用于将标准差转换为产量的经验性参数
    :return: 估算的产量
    """
    std_dev = np.std(temperature_distribution[1:-1])  # 忽略边界点
    return 1 / (std_dev * production_factor)  # 假设产量与标准差成反比


# 测试
if __name__ == '__main__':
    # 在模拟结束后调用产量估算函数
    T_final = simulate_metallurgy_process(alpha, T_initial, T_boundary)
    estimated_production = estimate_production(T_final, production_factor=100)  # 假设的产量因子
    print(f"Estimated production: {estimated_production}")

    #绘制温度分布图
    plot_temperature_distribution(T_final, title='Final Temperature Distribution')

3、涉及的Python第三方库:

  1. NumPy:NumPy是Python的一个基础数值计算库,提供了高性能的多维数组对象、线性代数、随机数生成等功能。你可以使用NumPy来创建和操作数组,执行各种数学运算。

  2. SciPy的optimize模块:SciPy是一个开源的Python算法库和数学工具包,包含了很多数学、科学和工程常用的库,如优化、线性代数、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等。它的optimize模块提供了多种优化算法,如梯度下降、牛顿法、最小二乘法等。

  3. Matplotlib:Matplotlib是一个Python的绘图库,它提供了一个类似于MATLAB的绘图框架,可以生成各种静态、动态、交互式的图表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值