python画立体温度分布图_Origin绘制3D立体温度分布图的方法

本文介绍如何使用Origin软件绘制3D立体温度分布图,包括数据准备、绘图步骤及后期调整等内容。

很多时候处理数据时需要绘制立体图,如温度分布等。那么本文就讲解下在Origin中如何绘制下图所示的3D立体温度分布图呢?

绘图所用数据下载地址:http://pan.baidu.com/share/link?shareid=1466663877&uk=3509330452

1、数据下载完成后,用Origin 9.0打开,并双击1调出数据1。

2、进入Plot菜单下的3D Surface,点击Color Map Surface得到下图。

3、双击得到的3D图,调出Plot Details-Plot Properties对话框。

点击Surface,勾选Parametric Surface。

X Matrix选择Mat(2),Y Matrix选择Mat(3)。

4、设置完后的效果图如下,一个很大的球形。

5、点击Graph工具栏中的Rescale按钮,即可看到完整的球形效果图。

接下来开始对球形表面进行填充及颜色调整。

6、双击3D图,调出Plot Details-Plot Properties对话框。

点击Fill,取消Contour fill from matrix后面的Self勾选,选择Mat(4)。

7、填充后的效果图如下,不过几乎都是一个颜色。

这是因为Contour(等高线)的颜色设置范围太大造成的。

更多相关阅读

### 使用 Python 绘制类似 Origin 软件的高斯分布图 为了实现这一目标,可以利用 `matplotlib` 和 `scipy` 库来创建高质量的二维高斯分布图像。下面是一个详细的实例说明。 #### 导入所需库 首先需要导入必要的 Python 依赖文件[^2]: ```python %matplotlib inline import matplotlib.pyplot as plt plt.style.use('seaborn-white') import numpy as np from scipy.stats import multivariate_normal ``` #### 定义网格和多变量正态分布 定义用于计算的概率密度函数以及相应的坐标网格[^3]: ```python # 创建一个均值向量和协方差矩阵 mean = [0, 0] covariance_matrix = [[1, 0], [0, 1]] # 构建X-Y平面内的点集 x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) pos = np.empty(X.shape + (2,)) pos[:, :, 0] = X pos[:, :, 1] = Y rv = multivariate_normal(mean, covariance_matrix) Z = rv.pdf(pos) ``` #### 可视化设置 通过不同方法展示二维高斯分布的效果: ##### 方法一:使用 `imshow()` 函数显示热力图形式的高斯分布 ```python fig, ax = plt.subplots(figsize=(8, 6)) im = ax.imshow(Z, extent=[-5, 5, -5, 5], origin='lower', cmap='viridis') ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.set_title('Gaussian Distribution Heatmap with imshow()', pad=20) cbar = fig.colorbar(im, ax=ax) cbar.ax.set_ylabel('Probability Density') plt.show() ``` ##### 方法二:使用 `contourf()` 函数填充轮廓线之间的区域并叠加等高线 ```python fig, ax = plt.subplots(figsize=(8, 6)) cfset = ax.contourf(X, Y, Z, cmap='coolwarm') cset = ax.contour(X, Y, Z, colors='k') ax.clabel(cset, inline=True, fontsize=10) ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.set_title('Filled Contours Plot of Gaussian Distribution') fig.colorbar(cfset, ax=ax) plt.show() ``` 上述两种绘图方式都可以很好地模拟 Origin 中常见的高斯分布图表样式。每种方法都有其特点,在实际应用中可以根据具体需求和个人喜好选择合适的方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值