【短时交通流量预测】基于小波神经网络WNN

课题名称:基于小波神经网络的短时交通流量预测

版本时间:2023-04-27

代码获取方式:

QQ:491052175

VX:Matlab_Lover

模型简介:

城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关,并且交通流量具有24小时内准周期的特性。首先采集4 天的交通流量数据,每隔15 分钟记录一次该段时间内的交通流量,一共记录384个时间点的数据。用3天共288 个交通流量的数据训练小波神经网络,最后用训练好的小波神经网络预测第4 天的交通流量。仿真拟采用前4个时间节点的交通流量预测。第5个时间节点;即可以理解为第1-4节点预测第5个节点,第2-5节点预测第6个节点,依次类推构建训练数据和测试数据。一天96个时间节点,按照上述逻辑可以组合92组数据;那么3天288个时间节点可以组合276组5维数据(这里需要注意的是,只能当天数据组合模型数据,故3天可以得到92*3=276组数据)。测试数据为第4天的96个节点,可以组合92组5维测试数据。BP神经网络的构建确定BP神经网络结构。本案例采用的BP神经网络的输入层有4个节点,表示预测时间节点前4个时间点的交通流量;隐含层有通过遍历求误差最小的隐含层节点;输出层有1节点,为网络预测的交通流量。

关于数据:

为什么288个交通流量数据,最后训练数据input=276*4;output=276*1 ?因为一天总共96组时间节点的交通流量;因为前4个节点预测第5个节点,故第1、2、3、4作为第一组训练输入,第5天作为第一组输出;第2、3、4、5作为第二组训练输入,第6天作为第二组输出....,最后,第92、93、94、95作为第92组输入,第96个节点作为第92组输出。所以一天96个节点最后只能有92组4维输入和1为输出。所以测试数据input_test和output_test是92*4和92*1。

模型建立:

1.小波神经网络建立:系统建模,选择合适的小波神经网络建立

2.小波神经网络训练:对小波神经网络初始化,初始化网络权值和小波基函数,利用训练数据训练小波神经网络,反复训练100次

3.小波神经网络测试:用训练好的小波神经网络预测短时交通流量, 并对预测结果进行分析。

改进方向:

待改进方向:

1. 因为训练数据比较少,为了提高预测精度,通过交叉验证并不断迭代寻找最佳的SPREAD值,最后应用于GRNN神经网络里。相比于固定的SPREAD值而言,自适应求解SPREAD值的方式可以更好地提高预测精度

特殊说明:

神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。

Matlab仿真结果:

基于小波神经网络WNN短时交通流量预测的预测输出

基于小波神经网络WNN短时交通流量预测的预测误差

基于小波神经网络WNN短时交通流量预测的预测误差百分比

#由于前20个样本的数据过小,导致误差百分比被拉高

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 小波神经网络(Wavelet Neural Network,WNN)是一种结合小波分析和人工神经网络预测模型,可以用于时间序列预测等方面。以下是一个简单的小波神经网络预测模型的Python代码示例: ``` import numpy as np import pywt from keras.models import Sequential from keras.layers import Dense # 定义小波函数,这里使用 Daubechies 4 小波 wavelet = pywt.Wavelet('db4') # 小波分解函数 def wavelet_decomposition(data, level): coeffs = pywt.wavedec(data, wavelet, level=level) return np.concatenate(coeffs) # 小波重构函数 def wavelet_reconstruction(coeffs): return pywt.waverec(coeffs, wavelet) # 生成训练数据 def generate_data(data, window_size, level): X, y = [], [] for i in range(len(data)-window_size-1): window = data[i:i+window_size] X.append(wavelet_decomposition(window, level)) y.append(data[i+window_size]) return np.array(X), np.array(y) # 构建小波神经网络模型 def build_model(input_shape): model = Sequential() model.add(Dense(32, input_shape=input_shape, activation='relu')) model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') return model # 训练模型 def train_model(X_train, y_train, epochs): input_shape = X_train[0].shape model = build_model(input_shape) model.fit(X_train, y_train, epochs=epochs, batch_size=32, verbose=0) return model # 预测函数 def predict(model, data, window_size, level): result = [] for i in range(len(data)-window_size-1): window = data[i:i+window_size] X = wavelet_decomposition(window, level) yhat = model.predict(X.reshape(1, -1))[0][0] result.append(yhat) return result # 示例使用 if __name__ == '__main__': # 生成示例数据 data = np.sin(np.arange(1000) / 10.0) # 设置小波分解层数和滑动窗口大小 level = 3 window_size = 32 # 生成训练数据和测试数据 X_train, y_train = generate_data(data[:800], window_size, level) X_test, y_test = generate_data(data[800:], window_size, level) # 训练模型 model = train_model(X_train, y_train, epochs=100) # 预测并计算误差 yhat_test = predict(model, data[800:], window_size, level) mse = np.mean((yhat_test - y_test) ** 2) print('MSE:', mse) ``` 这是一个简单的小波神经网络预测模型的代码示例,可以根据自己的需求进行修改和优化。 ### 回答2: 小波神经网络预测模型是一种结合小波分析和神经网络预测方法。其代码可以分为以下几个部分: 1. 导入所需的库和模块。首先需要导入用于数据处理和分析的库,如numpy、pandas等;然后导入小波分析的库,如pywt;最后导入神经网络的库,如keras。 2. 数据准备。根据需要预测的数据类型,读取相应的数据。将数据进行必要的预处理,如数据转换、归一化等操作。 3. 小波分解。使用小波分析方法对数据进行分解。选择适当的小波函数和分解层数,对数据进行分解得到近似系数和细节系数。 4. 特征提取。根据分解得到的近似系数和细节系数,提取相应的特征。可以使用统计特征、频域特征等方法进行特征提取。 5. 神经网络建模。根据提取的特征数据,构建神经网络模型。可以选择合适的神经网络结构,如多层感知机、卷积神经网络等。设置相应的激活函数、优化器、损失函数等。 6. 模型训练。将数据集划分为训练集和测试集,利用训练集对神经网络模型进行训练。选择合适的训练策略,如批量训练、随机梯度下降等。设置训练的迭代次数、学习率等参数。 7. 模型评估。使用测试集对训练好的模型进行评估。可以计算预测结果与实际结果之间的误差,如均方误差、平均绝对误差等指标。 8. 预测结果。使用训练好的模型对未来的数据进行预测。输入相应的特征数据,通过神经网络模型得到预测结果。 以上是小波神经网络预测模型的主要代码流程,可以根据具体需求进行相应的调整和优化。 ### 回答3: 小波神经网络是一种结合了小波分析和人工神经网络预测模型。它通过将小波分解应用于时间序列数据,提取出不同尺度上的特征,然后利用人工神经网络对这些特征进行建模和预测小波神经网络预测模型的代码主要包括以下几个步骤: 1. 数据预处理:首先,需要对时间序列数据进行加载和清洗,包括数据读取、异常值处理、归一化等。 2. 小波分解:使用小波变换将时间序列信号分解成不同尺度的小波系数。可以选择不同的小波基函数和分解层数,根据具体问题进行调整。 3. 特征提取:对小波分解得到的小波系数进行特征提取,可以使用统计量、频域特征等,目的是减少特征的维度同时保留有用的信息。 4. 建立神经网络模型:选择合适的神经网络结构,包括输入层、隐藏层和输出层,使用小波系数作为输入特征。可以选择常用的神经网络模型,如多层感知机(MLP)或循环神经网络(RNN)等。 5. 神经网络训练:通过反向传播算法,根据预测误差不断调整神经网络的权重和偏置,使得预测结果逼近真实值。可以设置合适的学习率、批次大小和训练轮数等参数。 6. 模型评估:使用一些指标,如均方根误差(RMSE)、平均绝对误差(MAE)等,来评估模型的性能和预测精度。 7. 预测结果:使用经过训练的神经网络模型来进行时间序列的预测,得到预测结果。 需要注意的是,小波神经网络的实现需要一定的数学基础和编程能力。另外,模型的性能也可能会受到选取的小波基函数和分解层数的影响,因此在实际应用中需要进行参数调优和模型选择。 综上所述,小波神经网络预测模型的代码主要包括数据预处理、小波分解、特征提取、神经网络建模、训练和评估等步骤。这个模型可以应用于各种时间序列预测问题,如股票价格预测、气候变化预测等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值