95所一流学科建设高校名单

博客提及95所一流学科建设高校名单,还表示更多大学排行榜可扫码查看。

更多大学排行榜扫码二维码查看

 

 

内容概要:本文系统阐述了企业新闻发稿在生成式引擎优化(GEO)时代下的全渠道策略与效果评估体系,涵盖当前企业传播面临的预算、资源、内容与效果评估四大挑战,并深入分析2025年新闻发稿行业五大趋势,包括AI驱动的智能化转型、精准化传播、首发内容价值提升、内容资产化及数据可视化。文章重点解析央媒、地方官媒、综合门户和自媒体四类媒体资源的特性、传播优势与发稿策略,提出基于内容适配性、时间节奏、话题设计的策略制定方法,并构建涵盖品牌价值、销售转化与GEO优化的多维评估框架。此外,结合“传声港”工具实操指南,提供AI智能投放、效果监测、自媒体管理与舆情应对的全流程解决方案,并针对科技、消费、B2B、区域品牌四大行业推出定制化发稿方案。; 适合人群:企业市场/公关负责人、品牌传播管理者、数字营销从业者及中小企业决策者,具备一定媒体传播经验并希望提升发稿效率与ROI的专业人士。; 使用场景及目标:①制定科学的新闻发稿策略,实现从“流量思维”向“价值思维”转型;②构建央媒定调、门户扩散、自媒体互动的立体化传播矩阵;③利用AI工具实现精准投放与GEO优化,提升品牌在AI搜索中的权威性与可见性;④通过数据驱动评估体系量化品牌影响力与销售转化效果。; 阅读建议:建议结合文中提供的实操清单、案例分析与工具指南进行系统学习,重点关注媒体适配性策略与GEO评估指标,在实际发稿中分阶段试点“AI+全渠道”组合策略,并定期复盘优化,以实现品牌传播的长期复利效应。
### 处理大学数据的编程方法 要处理包含大学信息的文本文件 `university1.txt` 并实现查询、排序和统计功能,可以使用 Python 编程语言结合 `pandas` 模块来完成。以下是具体的实现步骤。 #### 读取文本文件 首先需要将文本文件中的数据加载到程序中。假设文件是以逗号分隔的格式存储数据,并且每列分别表示大学名称、省份、是否为双一流高校等信息。可以通过以下代码读取数据: ```python import pandas as pd # 读取文本文件 university_data = pd.read_csv('university1.txt', sep=',', encoding='utf-8') # 显示前几行数据以确认正确性 print(university_data.head()) ``` #### 根据输入省份名输出对应的大学情况 为了根据用户输入的省份名筛选并输出该省的所有大学信息,可以使用 `pandas` 的条件筛选功能。例如: ```python # 获取用户输入的省份名 province_name = input("请输入省份名称:") # 筛选指定省份的数据 province_universities = university_data[university_data['省份'] == province_name] # 输出该省份的大学信息 print(province_universities) ``` #### 按双一流高校数量排序各省数据 为了按双一流高校数量对各省进行排序,首先需要确保数据中包含一个标识双一流高校的字段(如“双一流”),然后按省份分组并计算每个省份的双一流高校数量。最后,按照数量进行排序: ```python # 假设 '双一流' 列表示是否为双一流高校,值为 1 表示是,0 表示否 # 按省份分组并计算双一流高校数量 province_rank = university_data.groupby('省份')['双一流'].sum().reset_index() # 对结果进行降序排序 province_rank_sorted = province_rank.sort_values(by='双一流', ascending=False) # 输出排序后的结果 print(province_rank_sorted) ``` #### 统计全国的双一流一流大学数量 统计全国范围内的双一流高校数量可以直接对“双一流”列求和。如果数据中还包含“一流大学”的字段,则同样可以进行统计: ```python # 统计全国的双一流高校数量 national_double_first_class = university_data['双一流'].sum() # 如果存在“一流大学”字段,统计其数量 if '一流大学' in university_data.columns: national_top_class = university_data['一流大学'].sum() else: national_top_class = 0 # 输出统计结果 print(f"全国双一流高校数量: {national_double_first_class}") print(f"全国一流大学数量: {national_top_class}") ``` #### 完整代码示例 以下是一个完整的代码示例,整合了上述所有功能: ```python import pandas as pd # 读取文本文件 university_data = pd.read_csv('university1.txt', sep=',', encoding='utf-8') # 获取用户输入的省份名 province_name = input("请输入省份名称:") # 筛选指定省份的数据 province_universities = university_data[university_data['省份'] == province_name] print("\n该省份的大学信息:") print(province_universities) # 按省份分组并计算双一流高校数量 province_rank = university_data.groupby('省份')['双一流'].sum().reset_index() province_rank_sorted = province_rank.sort_values(by='双一流', ascending=False) print("\n各省双一流高校数量排名:") print(province_rank_sorted) # 统计全国的双一流高校数量 national_double_first_class = university_data['双一流'].sum() print(f"\n全国双一流高校数量: {national_double_first_class}") # 如果存在“一流大学”字段,统计其数量 if '一流大学' in university_data.columns: national_top_class = university_data['一流大学'].sum() print(f"全国一流大学数量: {national_top_class}") else: print("数据中未包含‘一流大学’字段。") ``` ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术提高效率

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值