MATLAB数据分析与统计-魏伟-专题视频课程

MATLAB数据分析与统计—7391人已学习
课程介绍    
201705061318081212.png
    全面学习MATLAB在数据统计分析领域中的知识
课程收益
    通过本课程的学习,可以快速的入门MATLAB数据统计与分析
讲师介绍
    魏伟 更多讲师课程
    精通c++,网络编程,数字图像处理领域,研究方向为数学视频图像处理领域,有多年开发经验。
课程大纲
  第1章:数据的导入与导出
    1. 读取Excel文件  21:27
    2. 数据写入Excel文件  9:48
    3. 读取TXT文件  12:33
    4. 数据写入TXT文件  9:16
  第2章:数据的预处理
    1. smooth函数平滑处理数据  27:37
    2. smoothts函数平滑处理数据  23:14
    3. medfilt1函数平滑处理数据  9:52
    4. 数据的标准化变换  15:19
    5. 数据的极差归一化变换  12:53
  第3章:概率分布与随机数
    1. 几种常见的概率分布  8:48
    2. MATLAB计算概率密度、分布函数  16:43
    3. rand函数生成均匀分布随机数  4:33
    4. 产生常见一元分布随机数  18:42
    5. 产生任意一元离散分布随机数  10:45
    6. 产生任意一元连续分布随机数  13:47
  第4章:概述性统计量和统计图
    1. 描述性统计量  36:54
    2. 箱线图  9:51
    3. 频数直方图和频率直方图  6:46
    4. 经验分布函数图  7:49
    5. 正态概率图  2:58
    6. p-p图  3:11
    7. q-q图  6:51
  第5章:MATLAB参数估计与假设检验-参数估计
    1. 常见分布的参数估计  17:54
    2. 自定义分布的参数估计  8:05
  第6章:MATLAB参数估计与假设-正态总体参数的检验
    1. 总体标准差已知时的单个正态总体均值的U检验  11:36
    2. 总体标准差未知时的单个正态总体均值的t检验  5:58
    3. 总体标准差未知时的两个正态总体均值的比较 t 检验  11:07
    4. 总体均值未知时的单个正态总体方差的卡方检验  5:55
    5. 总体均值未知时的两个正态总体方差的比较F检验  3:57
    6. 检验功效与样本容量的计算  13:05
  第7章:MATLAB参数估计与假设检验-常用非参数检验
    1. 游程检验  13:20
    2. 符号检验  9:13
    3. Wilcoxon(威尔科克森)符号秩检验  14:08
    4. 曼-惠特尼秩和检验  7:17
  第8章:非参数参数检验-分布的拟合与检验
    1. 卡方拟合优度检验  19:25
    2. Jarque-Bera检验  7:43
    3. 单样本的K-S检验  8:29
    4. 双样本的K-S检验  10:06
    5. Lilliefors检验  6:48
  第9章:MATLAB参数估计与假设检验-核密度估计
    1. 核密度估计  26:21
  第10章:方差分析
    1. 单因素一元方差分析(一)  25:17
    2. 单因素一元方差分析(二)  14:36
    3. 双因素一元方差分析  23:32
    4. 多因素一元方差分析  29:59
    5. 单因素多元方差分析  14:33
    6. 非参数方差分析(一)  16:45
    7. 非参数方差分析(二)  8:10
  第11章:回归分析
    1. 回归模型类  7:36
    2. 一元线性回归分析(一)  12:42
    3. 一元线性回归分析(二)  27:28
    4. 一元线性回归分析(三)  19:35
    5. 一元分线性回归分析(一)  22:54
    6. 一元分线性回归分析(二)  21:18
    7. 多元线性和广义线性回归(一)  18:50
    8. 多元线性和广义线性回归(二)  12:58
    9. 多项式回归  21:34
  第12章:聚类分析
    1. K均值聚类  23:07
    2. 模糊C均值聚类  17:44
  第13章:判别分析
    1. 聚类判别  13:46
    2. 贝叶斯判别  17:11
  第14章:主成分分析
    1. 主成分分析(一)  25:55
    2. 主成分分析(二)  32:57
    3. 主成分分析(三)  13:04
  第15章:因子分析
    1. 因子分析(一)  11:12
    2. 因子分析(二)  16:29
大家可以点击【 查看详情】查看我的课程
《Python数据挖掘与机器学习》是魏伟一编著的一本关于Python数据挖掘和机器学习的教材。这本教材主要介绍了Python编程语言在数据挖掘和机器学习领域的应用。下面从几个方面对这本教材进行说明。 首先,教材对Python的基础知识进行了简要介绍,包括Python的安装与配置、Python基本语法、数据类型、函数、模块和文件操作等。这为读者提供了Python编程的基础,使读者能够更好地理解后续介绍的数据挖掘和机器学习算法。 其次,教材详细介绍了数据挖掘的概念、方法和常用算法。其中包括数据预处理、数据探索、聚类分析、分类算法、关联规则挖掘等内容。针对每个算法,教材提供了详细的步骤和示例代码,帮助读者理解算法的原理和应用。 第三,教材还介绍了机器学习的基本概念和常用算法。包括监督学习、无监督学习、半监督学习和强化学习等。对于每个算法,教材提供了清晰的解释和实践示例,使读者能够理解算法的优缺点及其在实际问题中的应用。 最后,教材还介绍了Python常用的数据挖掘和机器学习工具和库,如Scikit-learn、TensorFlow、Keras等。这些工具和库提供了丰富的函数和类,方便读者在实践中应用所学的知识。 总之,《Python数据挖掘与机器学习》这本教材全面系统地介绍了Python在数据挖掘和机器学习领域的应用。无论是初学者还是有一定编程基础的人都可以通过这本教材学习如何使用Python进行数据挖掘和机器学习。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术提高效率

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值