matlab的分析与统计分析,matlab与统计分析

41528d3028836879cd698677c3999917.gifmatlab与统计分析

Matlab与统计分析 一、 回归分析 1、多元线性回归 1.1 命令 regress( ), 实现多元线性回归,调用格式为 [b,bint,r,rint,stats]=regress(y,x,alpha) 其中因变量数据向量Y和自变量数据矩阵x按以下排列方式输人                           n nk n n k k y y y y x x x x x x x x x x        2 1 2 1 2 22 21 1 12 11 , 1 1 1 对一元线性回归,取k=1即可。alpha为显著性水平(缺省时设定为0.05),输出向量b,bint 为回归系数估计值和它们的置信区间,r,rint为残差及其置信区间,stats是用于检验回 归模型的统计量,有三个数值,第一个是 , 其中R是相关系数,第二个是F统计量值, 2 R 第三个是与统计量F对应的概率P,当 时拒绝 ,回归模型成立.   P 0 H 注:1、两组数据的相关系数在概率论的标准定义是: R= E{(x - E{x}) * (y - E{y})} / (sqrt({(x - E{x})^2) * sqrt({(y - E{y})^2)) E{}求取期望值。也就是两组数据协方差与两者标准差乘积的商。如果|R|=1说明两者相关, R=0说明两者不相关. 1、F是方差分析中的一个指标,一般方差分析是比较组间差异的。F值越大,P值越小,表 示结果越可靠. 1.2 命令 rcoplot(r,rint),画出残差及其置信区间. 1.3 实例 1 已知某胡八年来湖水中COD浓度实测值(v)与影响因素湖区工业产值(x1)、总人口数(x2 )、 捕鱼量(x3 )、降水量( x4)资料,建立污染物Y的水质分析模型. Step 1 输入数据 x1=[1.376, 1.375, 1.387, 1.401, 1.412, 1.428, 1.445, 1.477];x2=[0.450,0.475,0.485,0.500,0.535,0.545,0.550,0.575]; x3=[2.170,2.554,2.676,2.713,2.823,3.088,3.122,3.262]; x4=[0.8922, 1.1610,0.5346,0.9589, 1.0239, 1.0499,1.1065, 1.1387]; Y=[5.19, 5.30,5.60,5.82,6.00,6.06,6.45,6.95]; Step 2 保存数据(以数据文件.mat 形式保存,便于以后调用) save data x1 x2 x3 x4 y load data %取出数据 Step 3 执行回归命令 x=[ones(8,1),x1,x2,x3,x4]; [b,bint,r,rint,stats]=regress(y,x) 得到结果: b=(-16.5283, 15.7206, 2.0327.-0.2106,-0.1991) stats=(0.9908,80.9530,0.0022) 即 Y= -16.5283+15.7206x1+2.0327x2-0.2106xl+0.1991x4 =0.9908, F=80.9530,P=0.0022 2 R 2、非线性回归 2.1 命令 nlinfit( ) 实现非线性回归,调用格式为 [beta,r,J]=nlinfit(x,y,‘model’,beta0) 其中,输入数据x,y分别为n×m矩阵和n维列向量,对一元非线性回归,x为n维列向量; model是事先用m-文件定义的非线性函数,beta0是回归系数的初值.beta是估计出的回归 系数,r是残差,J是Jacobian矩阵,它们是估计预测误差需要的数据. 2.2 命令 nlpredci( ) 预测和预测误差的估计,调用格式为 [y,delta]=npredci( model ,x,beta,r,j) 2.3 实例 2 对实例1中COD浓度实测值(Y),建立时序预测模型,这里选用logistic模型,即 kt be a y    1Step 1 建立非线性函数 对所要拟合的非线性模型建立m-文件model.m如下 function yhat=model(beta,t) yhat=beta(1)./(1+beta(2)*exp(-beta(3)*t)) Step 2 输入数据 t= 1:8 load data y(在data.mat中取出数据y) beta0=[50,10,1]’ Step 3 求回归系数 [beta,r,J]=nlinfit(t,Y, ‘model’, beta0) 得结果: beta=(56.1157,10.4006,0.0445)’ 即 0445 . 0 4006 . 10 1 1157 . 56    e y Step 4 预测及作图 [YY,delta]=nlpredci(‘model’,x ,beta,r ,J); plot(x,y, k+ ,x,YY, r ) 3、逐步回归 逐步回归的命令是stepwise, 它提供了一个交互式画面.通过此工具可自由地选择变量, 进行统计分析.调用格式为: stepwise(x,y,inmodel,alpha) 其中x是自变量数据,是 阶矩阵,y是因变量数据, 阶矩阵,inmodel是矩阵的列 m n  1  n 数指标(给出初始模型中包括的子集(缺省时设定为全部自变量) ,alpha是显著性水平 (缺省时为0.5). 运行stepwise命令时产生三个图形窗口:Stepwise Plot,Stepwise Table,Stepwise History.在Stepwise Plot窗口,显示出各项的回归系数及其置信区间. Stepwise Table 窗口中列出了一个统计表,包括回归系数及其置信区间,以及模型的统计 量剩余标准差(RMSE) 、相关系数(R-square) 、F值、与F对应的概率P.2、 主成分分析 这里给出江苏省生态城市主成份分析实例。 我们对江苏省十个城市的生态环境状况进行了调查,得到生态环境指标的指数值,见表 1。现对生态环境水平进行分析和评价。 我们利用Matlab6.5中的princomp命令实现。具体程序如下 x= [0.7883 0.7391 0.8111 0.6587 0.6543 0.8259 0.8486 0.6834 0.8495 0.7846 0.7633 0.7287 0.7629 0.8552 0.7564 0.7455 0.7800 0.9490 0.8918 0.8954 0.4745 0.5126 0.8810 0.8903 0.8288 0.7850 0.8032 0.8862 0.3987 0.3970 0.8246 0.7603 0.6888 0.8977 0.7926 0.7856 0.6509 0.8902 0.6799 0.9877 0.8791 0.8736 0.8183 0.9446 0.9202 0.9263

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值