96. Unique Binary Search Trees [LeetCode]

/**************************************************************************
 * 
 * 96. [Unique Binary Search Trees](https://leetcode.com/problems/unique-binary-search-trees/)
 * 
 * Given an integer n, return the number of structurally unique BST's (binary search trees) 
 * which has exactly n nodes of unique values from 1 to n.
 * 
 * BST: 
 *  - The left subtree of a node contains only nodes with keys lesser than the node’s key.
 *  - The right subtree of a node contains only nodes with keys greater than the node’s key.
 *  - The left and right subtree each must also be a binary search tree.
 * 
 * 给出1..n的数字序列,问可以组成多少种二叉搜索树。
 * 
 * 我们定义 
 *      f[n] :  长度为n时组成的二叉搜索树。
 * 根节点的情况共有n种,1, 2, 3, ..., n.
 * 把每一种根节点的BST树计算出来,然后把所有根节点的情况加起来即为总的f[n].
 * 
 * 由于二叉树的性质,取某个节点x作为root,左子树元素为 1 ~ x-1, 右子树的元素为 x+1 ~ n 
 * root:x   左子树元素个数:x-1, 右子树元素个数: n - x
 * 现在我们来计算 root 为 x 时的BST数目,把左右子树的BST数目相乘即可.
 * 左子树 1 ~ x-1, 根据定义,可用 f[x-1] 来表示 所有 1 ~ x-1 组成的BST.
 * 
 * 左子树问题解决了,那右子树的 x+1 ~ n的这些数组成的BST如何计算呢?
 * 根据二叉搜索树的性质,因为数字都是排序好的,其实 x+1 ~ n 共有n-x个元素,我们只需关注有多少个元素组成二叉搜索树就行了,
 * 因此右子树对应的BST为 f[n-x],另一种考虑方法是平移右子树序列和1对其,则右子树序列变为 1 ~ n-x
 * 
 * 因此root: x 
 * f[x] = f[x-1] * f[n-x]
 * 
 * f[n] = sum(f[x-1] * f[n-x]), where x ~ (1, n)   //把所有根节点的情况加起来
 * 
 * 
 **************************************************************************/


int numTrees(int n) {
    int *f = (int *)calloc(n + 1, sizeof(int));
    f[0] = 1;
    f[1] = 1;
    for (int i = 2; i <= n; i++) {
        for (int x = 1; x <= i; x++)
            f[i] += f[x - 1] * f[i - x];
    }
    int ret = f[n];
    free(f);
    return ret;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

luuyiran

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值