抖音巨量千川该怎么投?千万级展现的千川计划该怎么搭建?

抖音巨量千川是电商广告平台,为抖音商家和创作者们提供电商营销解决方案,支持百应达人角色通过百应跳转千川进行直播推广,含直播、短视频多种带货形式。所以抖音巨量千川是一个其实就是一个整合了多端投放手段、融合了电商经营场景的一个超级平台,因此,玩转抖音,必须深谙抖音巨量千川。

由于抖音巨量千川的推广方式和玩法众多,今天只着重讲解巨量千川中专业直播间带货的深度玩法!

一、不同的品类要怎么创建计划?

千川投放手法需要根据品类来分开。不同的品类的决策成本都不相同,决策成本主要受到直播间商品品类、客单价和购买需求等因素决定。

例如化妆品和食品这些决策成本低的品牌商家可以用散流量的手法,泛流量圈人在2000W以上。像是箱包、二手奢侈品等高决策成本的品牌商家可以用精准流量,精准流量圈人在500W以内。

很多品牌商家在直播过程中不知道怎么看千川投放的数据,也不知道自己投放的好不好,其实千川投放的千展成本可以用来衡量当前直播间的流量情况,用千川投放ROI来衡量直播间的投产比。

(数据来源:飞瓜智投,数据已获客户授权并脱敏处理)

二、抖音巨量千川要怎么出价?

这里有两种打法,一种是低预算高出价,更适合新入局的品牌商家用来直播起号,另一种是一条计划跑到底,这种更适合已经成熟的抖音直播号,适合已经有精准粉丝的垂直达人。

低预算高出价,更好进入学习期

在千川投放过程中要以自己的预算为主,当千川计划进入学习期之后要更改自己的投放出价,更改幅度大于20%,且出价更改时间大于10分钟对账号影响小,每条千川投放计划圈人大约在4000W人左右,通过修改价格控制时间段内的均匀点击量,如果高出预估点击数则降低价格,低于预估点击数则提高价格。

一条跑到底,更适合垂直达人

一条千川计划复制出的分别为成单计划和点击计划,每种5条,计划框选人员在1.3亿人次上下,且成单计划要点击计划出价高8-10倍,每条计划要修改的出价维度不高于10%,要以预算为主。

我们可以根据直播间的实时流量情况来判断直播前千川投放的流量转化详情。通过观察直播间千川渠道的观看人次、访问商品、支付订单的占比来判断直播间千川投放的整体好坏

(数据来源:飞瓜智投,数据已获客户授权并脱敏处理)

三、投放核心--计划要怎么调整

很多品牌商家和投手最关心的问题就是我的千川头投放计划跑的不好,要怎么调整?才能跑出高ROI,这里给大家一些参考意见

1、出价降价幅度要小于10%,加价幅度要大于20%

2、一次复制出3条优秀计划,且出价要改成之前的原始出价

3、当千川计划进入学习期之后,有技术数据积累(500曝光)d的情况下,点击率大于6.5%,则该条计划就是优质计划。

4、下播前提前半小时关闭组计划停量,相同停留成本的情况下,千展成本越低越好,相同千展成本的情况下,停留成本越多越好。

### 全域放广告逻辑与技术实现 的全域放是一种综合性的广告策略,旨在通过多种渠道和场景覆盖目标受众,提升品牌的曝光度和转化率。以下是关于其广告逻辑和技术实现的具体分析: #### 一、全域放的核心逻辑 全域放基于“内容种草 × 直播代运营 × 精准流”的三维策略[^3],主要围绕以下几个方面展开: - **多场景触达**:全域放不仅限于单一的内容形式或推广渠道,而是结合短视频、直播间等多种场景,全方位触达潜在消费者。 - **数据驱动优化**:利用平台的大数据分析能力,实时调整放策略,确保资源分配最优化。 - **全生命周期管理**:从用户的初次接触、兴趣激发到最终购买行为,全域放贯穿整个用户旅程。 #### 二、技术实现的关键要素 为了有效执行全域放,需要依赖一系列技术支持和工具: ##### 1. 数据洞察与人群画像构建 通过巨量引擎的数据分析功能,可以深入了解目标用户的行为特征和偏好。这些数据用于创建精准的人群标签,从而指导后续的定向放[^2]。 ```python # 示例代码:假设我们有一个用户行为数据集,可以通过机器学习模型预测高潜力客户 import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression data = pd.read_csv('user_behavior.csv') X, y = data.drop(columns=['is_potential_customer']), data['is_potential_customer'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = LogisticRegression() model.fit(X_train, y_train) predictions = model.predict(X_test) print(predictions[:10]) ``` ##### 2. 多元创意素材制作 高质量的内容是吸引用户关注的基础。在全域放中,需准备多种形式的创意素材,包括但不限于短视频脚本设计、直播间的互动话术等[^1]。 ##### 3. 自动化放与动态调优 借助算法自动化完成广告位的选择及预算分配工作,并根据实际效果反馈不断迭代改进方案。例如,在设定多个广告计划时,系统能够自动识别表现最佳的那个并加大入力度。 #### 三、注意事项 尽管全域放具有显著优势,但在实施过程中仍需要注意以下几点事项: - 明确KPI指标体系,便于衡量活动成效; - 定期审查账户健康状况,及时发现异常情况; - 加强团队协作沟通机制,促进跨部门间的信息共享。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值