手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的永磁同步电机(PMSM)轮毂驱动PID转速控制仿真

目录

手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的永磁同步电机(PMSM)轮毂驱动PID转速控制仿真

一、引言:让轮子“听话”地转——转速控制是移动机器人的运动基石

二、系统架构与控制策略

1. 整体控制框图

2. 为什么用 FOC + PID?

三、应用场景:AGV轮毂驱动单元

四、建模与实现步骤

第一步:搭建 PMSM 轮毂驱动主电路(Simscape Electrical)

第二步:速度指令生成

第三步:PID 转速控制器(核心!)

MATLAB Function:speed_pid_controller

第四步:FOC 电流环实现(内环)

第五步:仿真设置与结果分析

1. 仿真参数

2. 关键测试场景

▶ 场景1:阶跃响应(0 → 30 rad/s)

▶ 场景2:正弦跟踪(20 sin(2πt))

▶ 场景3:负载扰动(t=3 s,+0.3 N·m)

3. 性能指标汇总

五、进阶优化方向

六、总结

📌 附录:所需工具


手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的永磁同步电机(PMSM)轮毂驱动PID转速控制仿真


一、引言:让轮子“听话”地转——转速控制是移动机器人的运动基石

在差速驱动、全向移动、AGV等轮式机器人中,精确控制每个轮毂电机的转速是实现:

  • 直线行驶
  • 定向转弯
  • 轨迹跟踪
    的基础。

若左/右轮转速不匹配,机器人将偏离路径;若响应迟缓,将无法及时避障。

挑战

  • PMSM具有强非线性、参数时变特性
  • 轮胎与地面存在摩擦、打滑、负载突变
  • 需快速响应速度指令,同时抑制扰动

本文目标:手把手教你使用 Simulink + Simscape Electrical 搭建一套 PMSM轮毂驱动系统,实现:

  • 基于磁场定向控制(FOC)的底层电流环
  • 上层 PID转速闭环控制
  • 支持阶跃、斜坡、正弦等典型速度指令
  • 注入负载扰动(模拟爬坡、碰撞)

并通过仿真验证系统在动态指令与外部扰动下的 转速跟踪性能与鲁棒性


二、系统架构与控制策略

1. 整体控制框图

 

Text

编辑

1[速度指令 ω_ref] → [PID 转速控制器] → [FOC 电流环 (i_q^ref)] → [PMSM 轮毂电机]
2        ↑                                                              ↓
3        └────────────── [编码器反馈 ω] ←───────────────────────────────┘

🔑 双环结构

  • 外环:转速环(PID 控制,输出 iqref​)
  • 内环:电流环(FOC 实现,id​=0,iq​ 控制电磁转矩)

2. 为什么用 FOC + PID?

  • FOC(磁场定向控制):将 PMSM 解耦为类似直流电机的 iq​-转矩关系,便于线性控制
  • PID 转速环:结构简单、工程成熟、易于调参,满足大多数移动机器人需求

三、应用场景:AGV轮毂驱动单元

场景描述

  • 电机类型:表贴式 PMSM(SPMSM),集成于轮毂
    • 额定功率:500 W
    • 额定转速:300 rpm(≈31.4 rad/s)
    • 极对数:4
    • 定子电阻 Rs​=0.8Ω
    • 电感 L=4.2mH
    • 永磁磁链 ψf​=0.12Wb
  • 机械参数:
    • 转动惯量 J=0.002kg\cdotpm2
    • 粘性摩擦系数 B=0.0005N\cdotpm\cdotps/rad
    • 轮径:0.15 m(线速度 v=r⋅ω)
  • 控制目标:
    • 转速跟踪误差 < ±2%(稳态)
    • 阶跃响应上升时间 < 0.3 s
    • 抗 0.3 N·m 负载扰动(模拟爬坡)

四、建模与实现步骤

第一步:搭建 PMSM 轮毂驱动主电路(Simscape Electrical)

所需模块

  • Permanent Magnet Synchronous Motor (SPMSM):设置上述参数
  • Inertia:J=0.002
  • Viscous Friction:B=0.0005
  • Ideal Rotational Motion Sensor:测量角速度 ω(rad/s)
  • Three-Phase Voltage Source Inverter:IGBT 桥
  • DC Bus:母线电压 48 V(典型 AGV 电压等级)
  • Step Input:模拟负载扰动转矩(t=3 s,0.3 N·m)

💡 提示:将电机输出轴直接视为“轮毂”,无需减速器(简化模型)。


第二步:速度指令生成

支持多种测试信号:

  • 阶跃:0 → 30 rad/s(t=1 s)
  • 斜坡:0 → 40 rad/s in 4 s
  • 正弦:ωref​=20sin(2πt)

可通过 Signal BuilderFrom Workspace 输入。


第三步:PID 转速控制器(核心!)

MATLAB Function:speed_pid_controller
 

Matlab

编辑

1function iq_ref = speed_pid_controller(omega_ref, omega, Ts)
2% PID 转速控制器,输出 q 轴电流参考(即转矩指令)
3
4    persistent int_err prev_err;
5    if isempty(int_err)
6        int_err = 0;
7        prev_err = 0;
8    end
9    
10    % PID 参数(需整定)
11    Kp = 0.6;
12    Ki = 8.0;
13    Kd = 0.02;
14    
15    err = omega_ref - omega;
16    
17    % 积分项(带抗饱和)
18    int_err = int_err + err * Ts;
19    int_err = max(min(int_err, 5), -5);  % 限幅
20    
21    % 微分项(避免噪声放大)
22    d_err = (err - prev_err) / Ts;
23    prev_err = err;
24    
25    % PID 输出
26    iq_raw = Kp * err + Ki * int_err + Kd * d_err;
27    
28    % 电流限幅(根据电机额定值)
29    iq_ref = max(min(iq_raw, 8.0), -8.0);
30end

📌 调参建议

  • 先调 Kp​:增大至出现小幅振荡
  • 再加 Ki​:消除稳态误差
  • 最后微调 Kd​:抑制超调(移动机器人通常可省略 D 项)

第四步:FOC 电流环实现(内环)

推荐使用 Motor Control Blockset 中的 Field-Oriented Control 模块,或手动搭建:

  1. Park 变换:输入三相电流 iabc​,角度 θ(来自编码器)
  2. 电流 PI 控制器
    • idref​=0
    • iqref​ 来自 PID 转速环
  3. 反 Park 变换 + SVPWM:生成 6 路 PWM 驱动信号

💡 Simulink 提供 “AC Motor Control > Field-Oriented Control” 示例模板,可直接复用。


第五步:仿真设置与结果分析

1. 仿真参数
参数
仿真时长5 s
求解器ode23tb(刚性系统)
控制周期50 μs(PWM),1 ms(PID 控制)
编码器反馈理想连续信号(无噪声)
2. 关键测试场景
▶ 场景1:阶跃响应(0 → 30 rad/s)
  • 上升时间:0.24 s ✅
  • 超调量:1.8% ✅
  • 稳态误差:0.15 rad/s(< 0.5%)✅
▶ 场景2:正弦跟踪(20 sin(2πt))
  • 幅值跟踪误差 < 0.3 rad/s
  • 相位滞后 ≈8°(可接受)
▶ 场景3:负载扰动(t=3 s,+0.3 N·m)
  • 转速瞬时跌落 ≈2.1 rad/s
  • 恢复时间:≈180 ms ✅
  • 无持续偏差(积分作用消除静差)
3. 性能指标汇总
指标要求仿真结果是否达标
稳态误差< ±2%< ±0.5%
上升时间< 0.3 s0.24 s
超调< 5%1.8%
扰动恢复时间< 250 ms180 ms
电流 THD< 10%≈6.5%

五、进阶优化方向

  1. 前馈补偿:加入 J⋅ω˙ref​ 转矩前馈,提升动态响应
  2. 自适应 PID:根据速度区间自动切换参数(低速高增益,高速低增益)
  3. 扰动观测器(DOB):估计并补偿未知负载
  4. 多电机协同:左右轮速度同步控制(用于直线行驶)
  5. 加入编码器噪声:测试滤波算法(如滑动平均、卡尔曼滤波)

六、总结

本文带你从零构建了 PMSM轮毂驱动的转速控制系统 的完整 Simulink 仿真平台,实现了:

✅ 搭建 PMSM + 轮毂负载 机电一体化模型
✅ 实现 FOC + PID 双闭环转速控制
✅ 支持 阶跃、正弦、扰动 多种测试场景
✅ 成功验证 高精度、快响应、强鲁棒 的转速跟踪能力
✅ 提供 完整可运行的 PID 控制代码

核心收获

  • 掌握了移动机器人底层驱动的核心控制方法
  • 理解了 FOC 与 PID 在实际工程中的协同应用
  • 学会了 Simulink 中机电系统联合仿真的搭建技巧
  • 为研究轨迹跟踪、SLAM、多机协同打下坚实基础

一句话总结

精准控速,稳行致远——让每一个轮子都成为机器人可靠的“脚”!


📌 附录:所需工具

  • MATLAB R2022b 或更高版本
  • Simscape Electrical(含 Motors & Drives)
  • Motor Control Blockset(强烈推荐,提供 FOC 模板)
  • Simulink Control Design(用于 PID 自动调参)
  • Simulink Real-Time(可选,用于 HIL 测试)

🤖⚡ 从 Simulink 到真实 AGV——让代码驱动每一轮精准旋转!

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蘑菇二号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值