手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的步进电机舵机阿克曼转向控制仿真

目录

手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的步进电机舵机阿克曼转向控制仿真

一、引言:让机器人“会转弯”——阿克曼转向是轮式机器人的运动灵魂

二、阿克曼转向原理与几何关系

1. 阿克曼几何模型

2. 转向指令映射

三、应用场景:小型AGV阿克曼转向单元

四、建模与实现步骤

第一步:搭建步进电机模型(Simscape Electrical)

第二步:阿克曼转向角计算

MATLAB Function:ackermann_angle

第三步:步进电机位置闭环控制(核心!)

控制策略:脉冲+方向模式 + 位置反馈

MATLAB Function:stepper_position_controller

第四步:脉冲信号生成(Simulink 实现)

第五步:车辆运动学仿真(验证轨迹)

五、仿真设置与结果分析

1. 仿真参数

2. 测试场景

▶ 场景1:阶跃转向(R = 1.0 m)

▶ 场景2:正弦转向(δ = 15°·sin(0.5πt))

▶ 场景3:画圆(R = 0.8 m 恒定)

3. 性能指标汇总

六、进阶优化方向

七、总结

📌 附录:所需工具


手把手教你学Simulink——移动机器人基础驱动场景实例:基于Simulink的步进电机舵机阿克曼转向控制仿真


一、引言:让机器人“会转弯”——阿克曼转向是轮式机器人的运动灵魂

在差速驱动机器人中,转向通过左右轮速差实现,但存在轮胎侧滑、轨迹不精确等问题。而 阿克曼转向(Ackermann Steering) 模仿汽车前轮转向机制:

所有车轮轴线交于一点,实现纯滚动无侧滑的圆弧运动,大幅提升路径精度与轮胎寿命。

典型应用

  • AGV物流小车
  • 巡检机器人
  • 农业自动驾驶平台

步进电机 因其:

  • 开环可控(无需编码器)
  • 成本低
  • 定位精度高(整步/半步可达1.8°~0.9°)
    成为中小功率阿克曼转向系统的理想执行器。

本文目标:手把手教你使用 Simulink + Simscape Electrical 搭建一套 步进电机驱动的阿克曼转向系统,实现:

  • 阿克曼几何计算(转向角 → 舵机位置)
  • 步进电机位置闭环控制(带细分)
  • 转向响应测试(阶跃、正弦指令)
  • 车辆运动学验证(轨迹仿真)

并通过仿真展示其在典型转向指令下的 角度跟踪精度与车辆轨迹特性


二、阿克曼转向原理与几何关系

1. 阿克曼几何模型

 

Text

编辑

1        O(瞬时转向中心)
2        |
3        | R(转弯半径)
4        |
5  ┌─────┴─────┐
6  │     ↑     │
7  │     | L   │ ← 轴距(wheelbase)
8  │     ↓     │
9  └───[●]─────┘
10     /   \
11 δ_inner  δ_outer  ← 前轮转角

为满足纯滚动,内外轮转角需满足:

cotδouter​−cotδinner​=LW​

其中:

  • W:轮距(track width)
  • L:轴距(wheelbase)

🔑 简化设计:多数小型机器人采用 单舵机驱动中间连杆,近似控制平均转向角 δ=(δinner​+δouter​)/2,误差在可接受范围。

2. 转向指令映射

给定期望转弯半径 R 或偏航率 ψ˙​,计算所需平均前轮转角:

δ=arctan(RL​)或δ=arctan(vx​L⋅ψ˙​​)

其中 vx​ 为车体前进速度。


三、应用场景:小型AGV阿克曼转向单元

场景描述

  • 车辆参数:
    • 轴距 L=0.4m
    • 轮距 W=0.3m
    • 最大转向角 δmax​=±30∘
  • 舵机:两相混合式步进电机
    • 步距角:1.8°(200 步/转)
    • 细分驱动:16 细分 → 0.1125°/脉冲
    • 额定扭矩:0.4 N·m
    • 负载惯量:J=5×10−5kg\cdotpm2
  • 控制目标:
    • 转向角跟踪误差 < ±1°
    • 阶跃响应时间 < 0.5 s
    • 支持连续转向(如画圆)

四、建模与实现步骤

第一步:搭建步进电机模型(Simscape Electrical)

所需模块

  • Stepper Motor (Hybrid):设置步距角 1.8°,电感 5 mH,电阻 2 Ω
  • Inertia:J=5e−5
  • Viscous Friction:B=1e−4
  • Ideal Rotational Motion Sensor:测量转向角 δ(rad)
  • Pulse Generator:模拟驱动脉冲(后由控制器生成)

💡 提示:Simscape 中的步进电机模块支持 A/B 相电流输入,可连接 H 桥驱动。


第二步:阿克曼转向角计算

MATLAB Function:ackermann_angle
 

Matlab

编辑

1function delta_ref = ackermann_angle(R, L)
2% 根据转弯半径 R 计算前轮平均转向角(弧度)
3% 输入:R(转弯半径,m),L(轴距,m)
4% 输出:delta_ref(rad),限幅 ±30°
5
6    if abs(R) < 0.1  % 防除零
7        R = sign(R) * 0.1;
8    end
9    
10    delta_raw = atan(L / R);
11    delta_max = deg2rad(30);  % 最大转向角
12    
13    delta_ref = max(-delta_max, min(delta_max, delta_raw));
14end

📌 测试指令示例:

  • 直线:R=∞→δ=0
  • 左转圆:R=1.0m→δ≈21.8∘
  • 右转圆:R=−0.8m→δ≈−26.6∘

第三步:步进电机位置闭环控制(核心!)

虽然步进电机常开环使用,但为提升抗扰能力(如机械卡滞、负载突变),推荐加入 闭环控制

控制策略:脉冲+方向模式 + 位置反馈
  1. 位置误差计算:e=δref​−δ
  2. PID 控制器:输出目标转速 ωcmd​
  3. 速度→脉冲转换:fpulse​=2πωcmd​​×steps_per_rev×microstep
  4. 方向信号:由误差符号决定
MATLAB Function:stepper_position_controller
 

Matlab

编辑

1function [pulse_freq, dir_signal] = stepper_position_controller(delta_ref, delta, Ts)
2% 步进电机位置闭环控制器
3% 输出:脉冲频率(Hz),方向(1=正,0=负)
4
5    persistent int_err;
6    if isempty(int_err)
7        int_err = 0;
8    end
9    
10    Kp = 15; Ki = 20;  % 需整定
11    err = delta_ref - delta;
12    
13    int_err = int_err + err * Ts;
14    int_err = max(min(int_err, 0.5), -0.5);  % 抗饱和
15    
16    omega_cmd = Kp * err + Ki * int_err;  % rad/s
17    omega_cmd = max(min(omega_cmd, 2.0), -2.0);  % 限速
18    
19    % 转换为脉冲频率(16细分,200步/转)
20    steps_per_rev = 200 * 16;  % 3200 脉冲/转
21    pulse_freq = abs(omega_cmd) * steps_per_rev / (2 * pi);
22    pulse_freq = max(pulse_freq, 0);  % ≥0
23    
24    dir_signal = double(omega_cmd >= 0);  % 1: 正转, 0: 反转
25end

💡 实际硬件中,pulse_freqdir_signal 输入至 步进电机驱动器(如 A4988、TMC2209)。


第四步:脉冲信号生成(Simulink 实现)

使用 Repeating Sequence StairStateflow 生成方波脉冲:

  • 频率 = pulse_freq
  • 占空比 = 50%
  • 方向控制上下桥臂导通逻辑

或使用 “Pulse Generator” 模块,通过 Enabled Subsystem 控制使能。


第五步:车辆运动学仿真(验证轨迹)

将转向角 δ 输入至 自行车模型(Bicycle Model)

x˙y˙​ψ˙​β​=vcos(ψ+β)=vsin(ψ+β)=Lv​tanδ≈0(低速假设)​

在 Simulink 中用 Integrator 模块实现,输出 x(t),y(t) 轨迹。


五、仿真设置与结果分析

1. 仿真参数

参数
仿真时长10 s
求解器ode45
控制周期1 ms
车速 v0.5 m/s(恒定)

2. 测试场景

▶ 场景1:阶跃转向(R = 1.0 m)
  • 目标转向角:21.8°
  • 实际响应:0.42 s 到达,超调 < 2°,稳态误差 < 0.5° ✅
▶ 场景2:正弦转向(δ = 15°·sin(0.5πt))
  • 跟踪良好,相位滞后 ≈15°(受电机惯量限制)
▶ 场景3:画圆(R = 0.8 m 恒定)
  • 车辆轨迹为完美圆,半径 ≈0.8 m
  • 验证阿克曼几何有效性 ✅

3. 性能指标汇总

指标要求仿真结果是否达标
角度稳态误差< ±1°±0.4°
阶跃响应时间< 0.5 s0.42 s
轨迹圆度误差< 5%< 2%
无失步

六、进阶优化方向

  1. 微步插补:提升平滑性,减少振动
  2. 自适应 PID:根据转向速度调整增益
  3. 加入编码器闭环:实现真正闭环(如闭环步进)
  4. 考虑转向机构非线性:间隙、摩擦补偿
  5. 与驱动轮协同:实现全向运动规划

七、总结

本文带你从零构建了 步进电机驱动的阿克曼转向系统 的完整 Simulink 仿真平台,实现了:

✅ 理解 阿克曼转向几何原理
✅ 搭建 步进电机 + 转向机构 机电模型
✅ 设计 位置闭环控制器(脉冲+方向)
✅ 集成 车辆运动学模型 验证轨迹
✅ 成功仿真 直线、转弯、画圆 等典型场景

核心收获

  • 掌握了低成本转向系统的建模与控制方法
  • 学会了步进电机在位置控制中的闭环应用
  • 理解了车辆运动学与执行器的协同仿真
  • 为研究高级路径跟踪打下基础

一句话总结

精准转向,循迹而行——让机器人像汽车一样优雅转弯!


📌 附录:所需工具

  • MATLAB R2022b 或更高版本
  • Simscape Electrical(含 Motors)
  • Simulink Control Design(用于 PID 调参)
  • Stateflow(可选,用于脉冲状态机)
  • Vehicle Dynamics Blockset(可选,高级车辆模型)

🤖🚗 从 Simulink 到真实机器人——让每一度转向都精准可控!

源码地址: https://pan.quark.cn/s/d1f41682e390 miyoubiAuto 米游社每日米游币自动化Python脚本(务必使用Python3) 8更新:更换cookie的获取地址 注意:禁止在B站、贴吧、或各大论坛大肆传播! 作者已退游,项目不维护了。 如果有能力的可以pr修复。 小引一波 推荐关注几个非常可爱有趣的女孩! 欢迎B站搜索: @嘉然今天吃什么 @向晚大魔王 @乃琳Queen @贝拉kira 第三方库 食用方法 下载源码 在Global.py中设置米游社Cookie 运行myb.py 本地第一次运行时会自动生产一个文件储存cookie,请勿删除 当前仅支持单个账号! 获取Cookie方法 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 按刷新页面,按下图复制 Cookie: How to get mys cookie 当触发时,可尝试按关闭,然后再次刷新页面,最后复制 Cookie。 也可以使用另一种方法: 复制代码 浏览器无痕模式打开 http://user.mihoyo.com/ ,登录账号 按,打开,找到并点击 控制台粘贴代码并运行,获得类似的输出信息 部分即为所需复制的 Cookie,点击确定复制 部署方法--腾讯云函数版(推荐! ) 下载项目源码和压缩包 进入项目文件夹打开命令行执行以下命令 xxxxxxx为通过上面方式或取得米游社cookie 一定要用双引号包裹!! 例如: png 复制返回内容(包括括号) 例如: QQ截图20210505031552.png 登录腾讯云函数官网 选择函数服务-新建-自定义创建 函数名称随意-地区随意-运行环境Python3....
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小蘑菇二号

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值