找到搜索二叉树中两个错误的节点
题目描述:
一棵二叉树原本是搜索二叉树,但是其中有两个节点调换了位置,使得这棵二叉树不再是搜索二叉树,请按升序输出这两个错误节点的值。(每个节点的值各不相同)
输入描述:
第一行输入两个整数 n 和 root,n 表示二叉树的总节点个数,root 表示二叉树的根节点。
以下 n 行每行三个整数 fa,lch,rch,表示 fa 的左儿子为 lch,右儿子为 rch。(如果 lch 为 0 则表示 fa 没有左儿子,rch同理)
ps:节点的编号就是该节点的值。
输出描述:
请按升序输出这两个错误节点的值。
示例1
输入
3 1
1 2 3
2 0 0
3 0 0
输出
1 2
备注:
1 ≤ n ≤ 5 ∗ 1 0 5 1 \leq n \leq 5*10^5 1≤n≤5∗105
1 ≤ f a , l c h , r c h , r o o t ≤ n 1 \leq fa,lch,rch,root \leq n 1≤fa,lch,rch,root≤n
题解:
搜索二叉树有一个特征:中序遍历的序列是升序 ,那么我们可以以此作为突破点。如果有两个节点进行了交换,那么在新的二叉树中序遍历中一定会出现降序子序列(可能一次:相邻节点;可能两次:不相邻节点),其中第一个错误节点为第一次降序时较大的节点,第二个错误节点为最后一次降序时较小的节点。
代码:
#include <cstdio>
using namespace std;
const int N = 500010;
struct BST {
int val, lch, rch;
} bst[N];
int n, rt;
int fa, lch, rch;
int err[2];
void inorder(int root, int& pre) {
if (!root) return;
inorder(bst[root].lch, pre);
if (pre && bst[pre].val > bst[root].val) {
if (!err[0]) err[0] = pre;
err[1] = root;
}
pre = root;
inorder(bst[root].rch, pre);
}
int main(void) {
scanf("%d%d", &n, &rt);
while (n--) {
scanf("%d%d%d", &fa, &lch, &rch);
bst[fa].val = fa;
bst[fa].lch = lch;
bst[fa].rch = rch;
}
int pre = 0;
inorder(rt, pre);
printf("%d %d\n", bst[err[1]].val, bst[err[0]].val);
return 0;
}