最大公约数

一行代码求两个数的最大公约数

题目描述

给定两个不等于0的整数M和N,求M和N的最大公约数。

输入描述:

输入有两个整数。分别表示M, N

输出描述:

一个整数表示M, N的最大公约数

示例1
输入
6 12
输出
6
示例2
输入
2 3
输出
1
备注:

1 ⩽ M , N ⩽ 1 0 9 1 \leqslant M,N \leqslant 10^9 1M,N109


题解:

假设 m / n = a … b,那么 gcd(m, n) = gcd(n, b),下面来证明:

  • 设 c = gcd(m, n),d = gcd(n, b),证明 c = d

① m = k1 * c, n = k2 * c;

② b = m - n * a = (k1- k2 * a) * c

③ 所以 n 和 b 有公约数 c ,又因为 d = gcd(n, b),所以 c <= d

④ n = k3 * d,b = k4 * d

⑤ m = n * a + b = (k3 * a + k4) * d

⑥ 所以 m 和 n 有公约数 d ,又因为 c = gcd(m, n),所以 d <= c

⑦ 综合 ③ 和 ⑥ ,可知道 c = d。

代码:
#include <cstdio>
#include <cstdio>

using namespace std;

int gcd( int a, int b ) {
    return !b ? a : gcd( b, a % b );
}

int main( void ) {
    int a, b;
    scanf("%d%d", &a, &b);
    printf("%d\n", gcd( a, b ) );
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值