凸n边形的对角线最多能将其内部分成几个区域。
----区域数Tn的递推式与通式
金鸣
凸n边形的对角线最多(即不存在3条对角线交于一点)能将其内部分成几个区域?这一问题虽然有过多种简例与讨论[1],但无明确的结论。本文将给出完整的递推式,进而获得其通式。
记凸n边形的对角线最多能将其内部分成的区域数为Tn。
显然,可从图形直观可得:T3=1;T4=4;T5=11。
下面先给出从五边形到六边形的递推算法示例,然后再导出对任意n的递推式,进而获得其通用的表达式。
【示例】从T5出发计算T6
记T6=T5+d,下面将一步一步地添加对角线来计算区域数的增加值d。
1,如图1所示有五边形A1A2A3A4A5及其对角线(黑色),在边A5A1外任取一点A6,连接A6A5及A6A1(红色)得六边形。此时区域数增加1,d=1。
2,连结A6A2(棕色)。A6A2与原有的五边形从A1出发的边及对角线有6-3=3个交点。此时区域数增加(6-3)*1+1,d=1+((6-3)*1+1)。