怎么把深度学习输出的准确率、损失等信息保存下来

在使用 VS Code 编写深度学习代码时,如果你想要把输出(比如训练过程中的精度、损失等信息)保存到 .out 文件中,可以通过以下几种方法实现:

1. 使用终端重定向

最简单的方法是利用命令行的重定向功能。当你在 VS Code 的终端运行你的深度学习代码时,可以使用重定向操作符(>>>)将输出重定向到一个 .out 文件。

  • 使用 > 会创建新的文件或覆盖已有的文件。
  • 使用 >> 会向已有的文件追加内容,如果文件不存在则创建新文件。

例如,如果你的代码是一个 Python 脚本(train.py),你可以在终端中运行以下命令:

python train.py > output.out

或者,如果你想追加内容而不是覆盖:

python train.py >> output.out

2. 在代码中重定向输出

另一种方法是在你的深度学习代码内部进行输出重定向。这可以通过编程方式完成,比如在 Python 中,你可以使用 sys.stdout 来重定向标准输出。

import sys

# 打开一个文件用于输出
with open('output.out', 'w') as f:
    # 临时重定向标准输出到文件
    sys.stdout = f
    
    # 在这里执行你的代码,比如打印输出
    print("训练精度: 98%")
    
    # 重置标准输出到屏幕
    sys.stdout = sys.__stdout__

如果你希望整个脚本的输出都重定向到文件,可以将重定向的设置放在脚本开始部分,并在脚本结束前重置。

3. 使用日志库

对于更复杂的项目,考虑使用日志库来管理输出。Python 的 logging 库允许你非常灵活地控制日志信息的输出,包括输出到文件。

import logging

# 配置日志
logging.basicConfig(filename='output.out', level=logging.INFO, format='%(asctime)s - %(message)s')

# 使用日志
logging.info('训练精度: 98%')

这种方法的好处是你可以非常灵活地控制日志的等级、格式以及输出位置,非常适合用于生产环境和复杂的项目中。

选择哪种方法取决于你的具体需求和项目的复杂度。对于快速实验和简单脚本,使用终端重定向可能是最直接和最方便的方法。对于需要更精细控制输出格式和级别的情况,使用 logging 库会是更好的选择。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值