如何使用hugging face transformers库微调预训练模型【精炼要点】

以下内容是对hugging face官方NLP教程“微调一个预训练模型”章节的精炼总结。
详细内容和可以参考原教程链接:
https://huggingface.co/learn/nlp-course/zh-CN/chapter3/1?fw=pt

1. 设置环境

要点:安装必要的库并导入相关模块。我们需要安装transformersdatasets库,用于加载预训练模型和数据集。
代码方法和例子

!pip install transformers datasets
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from datasets import load_dataset

解释transformers库包含各种预训练模型,datasets库提供多种标准数据集。通过导入这些模块,我们可以方便地加载模型和数据集。

2. 加载数据集

要点:使用Hugging Face数据集加载器从库中加载特定数据集,例如GLUE任务中的MRPC数据集。
代码方法和例子

dataset = load_dataset("glue", "mrpc")

解释load_dataset函数从Hugging Face数据集库中加载指定的数据集,这里使用的是GLUE中的MRPC数据集。

3. 数据预处理

要点:使用预训练的分词器对数据进行编码。预处理步骤将文本数据转换为模型可接受的输入格式。
代码方法和例子

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased"
Hugging Face Transformers中,使用AWD-QAModel(即Abridged Wasserstein Distance Quantization Model)通常涉及到将预训练的大型语言模型进行量化,以便于部署到资源有限的设备上,如手机或嵌入式系统。AWD量化是通过Quantization-Aware Training (QAT) 过程实现的,它允许模型在训练过程中就考虑到量化的影响。 以下是使用Hugging Face Transformers进行AWD量化模型的基本步骤: 1. **安装依赖**: 首先,你需要安装`transformers`及其相关的量化工具包,例如`transformers quantization`。可以使用pip安装: ``` pip install transformers[quantization] ``` 2. **加载模型**: 导入需要的模块并加载预训练模型,比如BERT、GPT-2等: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification, is_apex_available, AWDQConfig model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 3. **量化配置**: 创建一个AWD量化配置对象: ```python config = AWDQConfig(model=model) ``` 4. **准备数据**: 将数据转换成模型接受的格式,并分割成小批次,这对于量化过程很重要。 5. **量化训练**: 使用`Trainer` API进行量化训练,这会自动在训练过程中应用量化技巧: ```python trainer = Trainer( model=model, args=..., data_collator=..., train_dataset=..., eval_dataset=..., # 可选 tokenizer=tokenizer, config=config, compute_metrics=..., ) trainer.train() ``` 6. **保存量化模型**: 训练完成后,你可以保存量化后的模型: ```python trainer.save_model("path/to/save/awd_quantized_model") ``` 7. **部署**: 现在可以将这个量化模型用于推理任务,相比未量化模型,它的内存占用更小,速度更快。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值