提到深度学习,就不得不提经典的「Dive into Deep Learning」。
这部由亚马逊首席科学家李沐等人的出品的深度学习教程,一出世就被包括加州大学伯克利分校、清华、北大、复旦、上海交通大学等国内外一流高校使用,并受到了行业大牛的一致推荐。
最近,实验楼还为这门经典的课程制作了线上实验版本。在保证原汁原味的同时,还将原实验的代码都使用 PyTorch 库来完成,并针对深度学习的部分配置了云主机环境,保证大家可以在线上环境顺利完成学习。
课程地址:
https://www.lanqiao.cn/courses/2777
从易到难,层层递进
整个课程的安排从易到难,所有理论模型都有对应的代码可以亲自动手实践。(因中文版权限制,课程以开源英文内容提供。)
整个课程目前分为 6 个部分:
第一部分:简单介绍 PyTorch 的使用和一些学习深度学习基础的数学知识。
第二部分:应用之前学到的知识,从零开始实现线性回归和分类问题,同时也会使用 PyTorch 中的高级 API 进行实现。
第三部分:接触深度神经网络,会实现多层感知机,以及学习什么是过拟合,以及如何进行处理。
第四部分:介绍如何使用 PyTorch 搭建深度模型,更进一步对 PyTorch 进行说明。
第五部分:介绍卷积网络的相关知识,包括卷积层的基础知识,池化层。最后会实现 LeNet。
第六部分:关注前沿的卷积网络,会讲到最新的卷积网络残差网络 ResNet,稠密连接网络 DenseNet 的实现。
这是一门市面上少有的注重实践、从基础出发的深度学习课程。你可以配合实验环境,亲自实践,更加深入地学习深度学习的知识。
点击文末的「阅读原文」了解课程更多内容!
????????????